[1] H. H. Huang, C. T. Sun, G. L. Huang, On the negative effective mass density in acoustic metamaterials, International Journal of Engineering Science, Vol. 47, No. 4, pp. 610-617, 2009/04/01/, 2009.
[2] Y. Wu, Y. Lai, Z.-Q. Zhang, Elastic metamaterials with simultaneously negative effective shear modulus and mass density, Physical review letters, Vol. 107, No. 10, pp. 105506, 2011.
[3] Y. Li, L. Zhu, T. Chen, Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation, Ultrasonics, Vol. 73, pp. 34-42, 2017.
[4] X. Zhou, X. Liu, G. Hu, Elastic metamaterials with local resonances: an overview, Theoretical and Applied Mechanics Letters, Vol. 2, No. 4, 2012.
[5] A. Khelif, Y. Achaoui, B. Aoubiza, Locally Resonant Structures for Low Frequency Surface Acoustic Band Gap Applications, in: Acoustic Metamaterials, Eds., pp. 43-59: Springer, 2013.
[6] Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. T. Chan, P. Sheng, Locally resonant sonic materials, science, Vol. 289, No. 5485, pp. 1734-1736, 2000.
[7] X. Wang, Dynamic behaviour of a metamaterial system with negative mass and modulus, International Journal of Solids and Structures, Vol. 51, No. 7-8, pp. 1534-1541, 2014.
[8] A. Movchan, S. Guenneau, Split-ring resonators and localized modes, Physical Review B, Vol. 70, No. 12, pp. 125116, 2004.
[9] N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, X. Zhang, Ultrasonic metamaterials with negative modulus, Nature materials, Vol. 5, No. 6, pp. 452, 2006.
[10] Z. G. Wang, S. H. Lee, C. K. Kim, C. M. Park, K. Nahm, S. Nikitov, Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators, Journal of Applied Physics, Vol. 103, No. 6, pp. 064907, 2008.
[11] K. T. Tan, H. Huang, C. Sun, Blast-wave impact mitigation using negative effective mass density concept of elastic metamaterials, International Journal of Impact Engineering, Vol. 64, pp. 20-29, 2014.
[12] S. H. Lee, O. B. Wright, Origin of negative density and modulus in acoustic metamaterials, Physical Review B, Vol. 93, No. 2, pp. 024302, 2016.
[13] J. S. Jensen, Phononic band gaps and vibrations in one-and two-dimensional mass–spring structures, Journal of Sound and Vibration, Vol. 266, No. 5, pp. 1053-1078, 2003.
[14] R. Halir, P. J. Bock, P. Cheben, A. Ortega‐Moñux, C. Alonso‐Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, J. G. Wangüemert‐Pérez, Í. Molina‐Fernández, Waveguide sub‐wavelength structures: a review of principles and applications, Laser & Photonics Reviews, Vol. 9, No. 1, pp. 25-49, 2015.
[15] Y.-J. Park, A. H.-S. Ang, Mechanistic seismic damage model for reinforced concrete, Journal of structural engineering, Vol. 111, No. 4, pp. 722-739, 1985.
[16] X. Kong, Q. Fang, H. Wu, J. Hong, A comparison of strain-rate enhancement approaches for concrete material subjected to high strain-rate, International Journal of Protective Structures, Vol. 8, No. 2, pp. 155-176, 2017.
[17] P. Aggarwal, R. Siddique, Y. Aggarwal, S. M. Gupta, Self-compacting concrete-procedure for mix design, Leonardo electronic journal of practices and technologies, Vol. 12, pp. 15-24, 2008.
[18] J. Dewar, Concrete mix design, 2003.
[19] C. T. Kennedy, The design of concrete mixes, in Proceeding of, 373-400.
[20] S. J. Mitchell, A. Pandolfi, M. Ortiz, Metaconcrete: designed aggregates to enhance dynamic performance, Journal of the Mechanics and Physics of Solids, Vol. 65, pp. 69-81, 2014.
[21] D. Briccola, M. Ortiz, A. Pandolfi, Experimental validation of metaconcrete blast mitigation properties, Journal of Applied Mechanics, Vol. 84, No. 3, pp. 031001, 2017.
[22] S. J. Mitchell, A. Pandolfi, M. Ortiz, Investigation of elastic wave transmission in a metaconcrete slab, Mechanics of Materials, Vol. 91, pp. 295-303, 2015.
[23] Y. Lu, K. Xu, Modelling of dynamic behaviour of concrete materials under blast loading, International Journal of Solids and Structures, Vol. 41, No. 1, pp. 131-143, 2004.
[24] M. Zineddin, T. Krauthammer, Dynamic response and behavior of reinforced concrete slabs under impact loading, International Journal of Impact Engineering, Vol. 34, No. 9, pp. 1517-1534, 2007.
[25] G. Hu, L. Tang, R. Das, S. Gao, H. Liu, Acoustic metamaterials with coupled local resonators for broadband vibration suppression, AIP Advances, Vol. 7, No. 2, pp. 025211, 2017.
[26] S. Yao, X. Zhou, G. Hu, Experimental study on negative effective mass in a 1D mass–spring system, New Journal of Physics, Vol. 10, No. 4, pp. 043020, 2008.
[27] H.-H. Huang, Dynamic characteristics of an acoustic metamaterial with locally resonant microstructures, Thesis, Purdue University, 2009.
[28] C. Albertini, E. Cadoni, K. Labibes, Study of the mechanical properties of plain concrete under dynamic loading, Experimental Mechanics, Vol. 39, No. 2, pp. 137-141, June 01, 1999.
[29] L. Yuan, T. Xu, Q. Xu, Spallation of Concrete under Dynamic Loading: Mesh Size Effect, in Proceeding of, Trans Tech Publ, pp. 929-933.
[30] S. Wang, M.-H. Zhang, S. T. Quek, Mechanical behavior of fiber-reinforced high-strength concrete subjected to high strain-rate compressive loading, Construction and Building Materials, Vol. 31, pp. 1-11, 2012.