[1] J. A. George, Computer implementation of the finite element method, Ph.D Thesis, Computer Science Stanford University, USA, 1971.
[2] S. Lo, A new mesh generation scheme for arbitrary planar domains, International Journal for Numerical Methods in Engineering, Vol. 21, No. 8, pp. 1403-1426, 1985.
[3] J. Peraire, M. Vahdati, K. Morgan, O. C. Zienkiewicz, Adaptive remeshing for compressible flow computations, Journal of computational physics, Vol. 72, No. 2, pp. 449-466, 1987.
[4] S. Lo, Dynamic grid for mesh generation by the advancing front method, Computers & Structures, Vol. 123, pp. 15-27, 2013.
[5] M. Malekan, L. L. Silva, F. B. Barros, R. L. Pitangueira, S. S. Penna, Two-dimensional fracture modeling with the generalized/extended finite element method: An object-oriented programming approach, Advances in Engineering Software, Vol. 115, pp. 168-193, 2018.
[6] Y. Liu, G. Glass, Choose the Best Element Size to Yield Accurate FEA Results While Reduce FE Models’s Complixity, British Journal of Engineering and Technology, Vols, Vol. 1, pp. 13-28, 2013.
[7] N. Benamara, A. Boulenouar, M. Aminallah, N. Benseddiq, On the mixed-mode crack propagation in FGMs plates: Comparison of different criteria, Structural Engineering and Mechanics, Vol. 615, No. 3, pp. 371-379, 2017.
[8] S. Soman, K. Murthy, P. Robi, A simple technique for estimation of mixed mode (I/II) stress intensity factors, Journal of Mechanics of Materials and Structures, Vol. 13, No. 2, pp. 141-154, 2018.
[9] M. Yaylaci, The investigation crack problem through numerical analysis, Structural Engineering and Mechanics, Vol. 57, No. 6, pp. 1143-1156, 2016.
[10] S. P. Jena, D. R. Parhi, D. Mishra, Comparative study on cracked beam with different types of cracks carrying moving mass, Structural Engineering and Mechanics, Vol. 56, No. 5, pp. 797-811, 2015.
[11] S. T. More, R. Bindu, Effect of mesh size on finite element analysis of plate structure, Int. J. Eng. Sci. Innovative Technol, Vol. 4, No. 3, pp. 181-185, 2015.
[12] A. M. Alshoaibi, Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading, Structural Engineering and Mechanics, Vol. 35, No. 3, pp. 283-299, 2010.
[13] A. M. Alshoaibi, An Adaptive Finite Element Framework for Fatigue Crack Propagation under Constant Amplitude Loading, International Journal of Applied Science and Engineering, Vol. 13, No. 3, pp. 261-270, 2015.
[14] R. S. Barsoum, Application of quadratic isoparametric finite elements in linear fracture mechanics, International Journal of Fracture, Vol. 10, No. 4, pp. 603-605, 1974.
[15] R. Henshell, K. Shaw, Crack tip finite elements are unnecessary, International journal for numerical methods in engineering, Vol. 9, No. 3, pp. 495-507, 1975.
[16] G. V. Guinea, J. Planas, M. Elices, KI evaluation by the displacement extrapolation technique, Engineering fracture mechanics, Vol. 66, No. 3, pp. 243-255, 2000.
[17] F. Erdogan, G. Sih, On the crack extension in plates under plane loading and transverse shear, Journal of basic engineering, Vol. 85, No. 4, pp. 519-525, 1963.
[18] J. E. Srawley, Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens, International Journal of Fracture, Vol. 12, No. 3, pp. 475-476, 1976.
[19] L. Parnas, Ö. G. Bilir, E. Tezcan, Strain gage methods for measurement of opening mode stress intensity factor, Engineering fracture mechanics, Vol. 55, No. 3, pp. 485-492, 1996.
[20] A. Mourad, M. Alghafri, O. A. Zeid, S. Maiti, Experimental investigation on ductile stable crack growth emanating from wire-cut notch in AISI 4340 steel, Nuclear engineering and design, Vol. 235, No. 6, pp. 637-647, 2005.