[1] J. Alexander, An approximate analysis of the collapse of thin cylindrical shells under axial loading, The Quarterly Journal of Mechanics and Applied Mathematics, Vol. 13, No. 1, pp. 10-15, 1960.
[2] T. Wierzbicki, W. Abramowicz, On the crushing mechanics of thin-walled structures, Journal of Applied mechanics, Vol. 50, No. 4a, pp. 727-734, 1983.
[3] W. A. N. Jones, W. Abramowicz, Dynamic axial crushing of square tubes, International Journal of Impact Engineering, Vol. 2, pp. 179-208, 1984.
[4] W. Abramowicz, T. Wierzbicki, Axial crushing of multicorner sheet metal columns, Journal of Applied Mechanics, Vol. 56, No. 1, pp. 113-120, 1989.
[5] M. White, N. Jones, W. Abramowicz, A theoretical analysis for the quasi-static axial crushing of top-hat and double-hat thin-walled sections, International Journal of Mechanical Sciences, Vol. 41, No. 2, pp. 209-233, 1999.
[6] A. Najafi, M. Rais-Rohani, Mechanics of axial plastic collapse in multi-cell, multi-corner crush tubes, Thin-Walled Structures, Vol. 49, No. 1, pp. 1-12, 2011.
[7] W. Hao, J. Xie, F. Wang, Theoretical prediction of the progressive buckling and energy absorption of the sinusoidal corrugated tube subjected to axial crushing, Computers & Structures, Vol. 191, pp. 12-21, 2017.
[8] W. Hong, F. Jin, J. Zhou, Z. Xia, Y. Xu, L. Yang, Q. Zheng, H. Fan, Quasi-static axial compression of triangular steel tubes, Thin-Walled Structures, Vol. 62, pp. 10-17, 2013.
[9] G. Martínez, C. Graciano, P. Teixeira, Energy absorption of axially crushed expanded metal tubes, Thin-Walled Structures, Vol. 71, pp. 134-146, 2013.
[10] T. Wierzbicki, W. Abramowicz, The mechanics of deep plastic collapse of thin walled structures, Jones N, Wierzbicki T, editors. Structural failure, pp. 281–329, 1989.
[11] X. Zhang, H. Huh, Crushing analysis of polygonal columns and angle elements, International Journal of Impact Engineering, Vol. 37, No. 4, pp. 441-451, 2010.
[12] X. Zhang, H. Zhang, Crush resistance of square tubes with various thickness configurations, International Journal of Mechanical Sciences, Vol. 107, pp. 58-68, 2016.
[13] J. Song, Y. Zhou, F. Guo, A relationship between progressive collapse and initial buckling for tubular structures under axial loading, International Journal of Mechanical Sciences, Vol. 75, pp. 200-211, 2013.
[14] S. Liu, Z. Tong, Z. Tang, Y. Liu, Z. Zhang, Bionic design modification of non-convex multi-corner thin-walled columns for improving energy absorption through adding bulkheads, Thin-Walled Structures, Vol. 88, pp. 70-81, 2015.
[15] Y. Tao, S. Duan, W. Wen, Y. Pei, D. Fang, Enhanced out-of-plane crushing strength and energy absorption of in-plane graded honeycombs, Composites Part B: Engineering, Vol. 118, pp. 33-40, 2017.
[16] M. Macaulay, R. Redwood, Small scale model railway coaches under impact, The Engineer, Vol. 218, pp. 1041-1046, 1964.
[17] A. Pugsley, The crumpling of tubular structures under impact conditions, in Proceeding of, 33-41.
[18] A. Coppa, New ways to soften shock, Machine Design, Vol. 28, pp. 130-140, 1968.
[19] A. A. Ezra, An assessment of energy absorbing devices for prospective use in aircraft impact situations, in Proceeding of, Pergamon Press, pp.
[20] S. Reid, T. Reddy, Axially loaded metal tubes as impact energy absorbers, in: Inelastic behaviour of plates and shells, Eds., pp. 569-595: Springer, 1986.
[21] W. Abramowicz, N. Jones, Dynamic progressive buckling of circular and square tubes, International Journal of Impact Engineering, Vol. 4, No. 4, pp. 243-270, 1986.
[22] W. Abramowicz, Thin-walled structures as impact energy absorbers, Thin-Walled Structures, Vol. 41, No. 2, pp. 91-107, 2003.
[23] J. Fang, Y. Gao, G. Sun, N. Qiu, Q. Li, On design of multi-cell tubes under axial and oblique impact loads, Thin-Walled Structures, Vol. 95, pp. 115-126, 2015.
[24] H. Sun, J. Wang, G. Shen, P. Hu, Energy absorption of aluminum alloy thin-walled tubes under axial impact, Journal of Mechanical Science and Technology, Vol. 30, No. 7, pp. 3105-3111, 2016.
[25] D. Karagiozova, M. Alves, Dynamic elastic-plastic buckling of structural elements: a review, Applied Mechanics Reviews, Vol. 61, No. 4, pp. 040803, 2008.
[26] T. Tran, S. Hou, X. Han, M. Chau, Crushing analysis and numerical optimization of angle element structures under axial impact loading, Composite Structures, Vol. 119, pp. 422-435, 2015.
[27] C. Zhou, B. Wang, J. Ma, Z. You, Dynamic axial crushing of origami crash boxes, International journal of mechanical sciences, Vol. 118, pp. 1-12, 2016.
[28] M. Costas, J. Díaz, L. Romera, S. Hernández, A multi-objective surrogate-based optimization of the crashworthiness of a hybrid impact absorber, International Journal of Mechanical Sciences, Vol. 88, pp. 46-54, 2014.
[29] S. Ebrahimi, N. Vahdatazad, Multiobjective optimization and sensitivity analysis of honeycomb sandwich cylindrical columns under axial crushing loads, Thin-Walled Structures, Vol. 88, pp. 90-104, 2015.
[30] A. Jusuf, T. Dirgantara, L. Gunawan, I. S. Putra, Crashworthiness analysis of multi-cell prismatic structures, International Journal of Impact Engineering, Vol. 78, pp. 34-50, 2015.
[31] A. P. Meran, T. Toprak, A. Muğan, Numerical and experimental study of crashworthiness parameters of honeycomb structures, Thin-Walled Structures, Vol. 78, pp. 87-94, 2014.
[32] M. Bambach, M. Elchalakani, Plastic mechanism analysis of steel SHS strengthened with CFRP under large axial deformation, Thin-walled structures, Vol. 45, No. 2, pp. 159-170, 2007.
[33] A. Farajpour, A. Rastgoo, M. Farajpour, Nonlinear buckling analysis of magneto-electro-elastic CNT-MT hybrid nanoshells based on the nonlocal continuum mechanics, Composite Structures, Vol. 180, pp. 179-191, 2017.
[34] A. Rajaneesh, I. Sridhar, S. Rajendran, Relative performance of metal and polymeric foam sandwich plates under low velocity impact, International Journal of Impact Engineering, Vol. 65, pp. 126-136, 2014.
[35] L. Aktay, A. K. Toksoy, M. Güden, Quasi-static axial crushing of extruded polystyrene foam-filled thin-walled aluminum tubes: experimental and numerical analysis, Materials & design, Vol. 27, No. 7, pp. 556-565, 2006.
[36] M. Shishesaz, M. Kharazi, P. Hosseini, M. Hosseini, Buckling Behavior of Composite Plates with a Pre-central Circular Delamination Defect under in-Plane Uniaxial Compression, Journal of Computational Applied Mechanics, Vol. 48, No. 1, pp. 12, 2017.
[37] B. W. Schafer, The direct strength method of cold-formed steel member design, Journal of constructional steel research, Vol. 64, No. 7-8, pp. 766-778, 2008.
[38] B. Schafer, Local, distortional, and Euler buckling of thin-walled columns, Journal of structural engineering, Vol. 128, No. 3, pp. 289-299, 2002.
[39] S. P. Timoshenko, Stability of bars, plates, and shells, International Applied Mechanics, Vol. 7, No. 10, pp. 1175-1176, 1971.