Fatigue and Anisotropic behaviours of cold rolled AA1200 Aluminium Alloy

Document Type : Research Paper


1 Department of Mechanical Engineering, University of Lagos, Nigeria.

2 Department of Mechanical Engineering, University of Lagos, Nigeria

3 Department of Metallurgical and Materials Engineering, University of Lagos, Nigeria


This study examines the fatigue and anisotropy behaviour of cold rolled AA1200 aluminium alloy for light weight automotive connecting rod application. Aluminium (Al) 1200 ingots were melted at temperature of 680 0C (after one hour of heating) cast in sand mould and cast samples homogenized for 6 hrs at 480 0C. The cold rolling process was carried out after homogenisation for 10, 20, 30, 40 and 50% thickness reductions. The samples were characterised in 00, 150, 300, 450, 600, 750 and 900 to the rolling direction. The results show that degree of deformation increase linearly with mean stress, stress range, stress ratio, stress amplitude, thickness and area ratio for all the reductions and directions examined. Area and thickness ratio increases linearly with deformation at higher inclination (> 150). The fatigue life obtained in this work shows life cycles at different degrees of deformation: 7.5 x 104 cycles at 10% reduction, 1.3 x105 cycles at 20% reduction, 4.3 x 104 cycles at 30% reduction; 2.6 x 105 cycles at 40% reduction and 1.09 x 105 cycles at 50% reduction). The results of this study provide evidence that systemic controlled cold deformation can potentially be used to significantly enhance the fatigue life of AA1200 aluminium alloy components subjected to cyclic loadings.


Main Subjects

[1]          C. Zamponi, M. Haaks, I. Müller, T. Staab, G. Tempus, K. Maier, Investigation of fatigue cracks in aluminium alloys 2024 and 6013 in laboratory air and corrosive environment, Journal of materials science, Vol. 39, No. 23, pp. 6951-6956, 2004.
[2]          K. Nocke, F. Bergner, H. Bersch, I. Haase, H. Worch, G. Tempus, E. Loechelt, Environment‐sensitive fracture of aluminium alloy 6013, Materials and Corrosion, Vol. 51, No. 9, pp. 628-634, 2000.
[3]          I. Haase, K. Nocke, H. Worch, G. Zouhar, G. Tempus, An Investigation of the fatigue behaviour of the aluminium alloy AA 6013 T6 in a corrosive medium, Praktische Metallographie-Practical Metallography, Vol. 38, No. 3, pp. 119-137, 2001.
[4]          R. Oskouei, R. Ibrahim, Improving fretting fatigue behaviour of Al 7075-T6 bolted plates using electroless Ni–P coatings, International Journal of Fatigue, Vol. 44, pp. 157-167, 2012.
[5]          F. Wang, J. Xu, J. Li, X. Li, H. Wang, Fatigue crack initiation and propagation in A356 alloy reinforced with in situ TiB2 particles, Materials & Design, Vol. 33, pp. 236-241, 2012.
[6]          P. Peralta, R. Dickerson, N. Dellan, K. Komandur, M. Jameel, Effects of local grain orientation on fatigue crack growth in multicrystalline fcc metallic materials, Journal of engineering materials and technology, Vol. 127, No. 1, pp. 23-32, 2005.
[7]          I. Westermann, K. E. Snilsberg, Z. Sharifi, O. S. Hopperstad, K. Marthinsen, B. Holmedal, Three-point bending of heat-treatable aluminum alloys: influence of microstructure and texture on bendability and fracture behavior, Metallurgical and Materials Transactions A, Vol. 42, No. 11, pp. 3386-3398, 2011.
[8]          D. Jiang, C. Wang, Influence of microstructure on deformation behavior and fracture mode of Al–Mg–Si alloys, Materials Science and Engineering: A, Vol. 352, No. 1-2, pp. 29-33, 2003.
[9]          T. Savaşkan, A. P. Hekimoğlu, Effect of quench–ageing treatment on the microstructure and properties of Zn-15Al-3Cu alloy, International Journal of Materials Research, Vol. 106, No. 5, pp. 481-487, 2015.
[10]        J. B. Zhang, Y. A. Zhang, B. H. Zhu, R. Q. Liu, F. Wang, Q. M. Liang, Characterization of microstructure and mechanical properties of Al–Cu–Mg–Ag–(Mn/Zr) alloy with high Cu: Mg, Materials & Design, Vol. 49, pp. 311-317, 2013.
[11]        R. Oskouei, R. Ibrahim, The effect of clamping compressive stresses on the fatigue life of Al 7075-T6 bolted plates at different temperatures, Materials & Design, Vol. 34, pp. 90-97, 2012.
[12]        T. Savaşkan, H. Tan, Fatigue behaviour of Al–25Zn–3Cu alloy, Materials Science and Technology, Vol. 30, No. 8, pp. 938-943, 2014.
[13]        M. Rahmat, R. Ibrahim, R. Oskouei, A study on the combined effect of notch and fretting on the fatigue life behaviour of Al 7075-T6, Materials & Design, Vol. 60, pp. 136-145, 2014.
[14]        C. Rubio-González, J. Ocana, G. Gomez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro, M. Morales, Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy, Materials Science and Engineering: A, Vol. 386, No. 1-2, pp. 291-295, 2004.
[15]        H. Shi, E.-H. Han, F. Liu, S. Kallip, Protection of 2024-T3 aluminium alloy by corrosion resistant phytic acid conversion coating, Applied Surface Science, Vol. 280, pp. 325-331, 2013.
[16]        J. Vázquez, C. Navarro, J. Domínguez, Experimental results in fretting fatigue with shot and laser peened Al 7075-T651 specimens, International Journal of Fatigue, Vol. 40, pp. 143-153, 2012.
[17]        É. F. Prados, V. L. Sordi, M. Ferrante, Microstructural development and tensile strength of an ECAP: deformed Al-4 wt.(%) Cu alloy, Materials Research, Vol. 11, No. 2, pp. 199-205, 2008.
[19]        D. Kemal, A. Vanja, R. Dragan, The Influence of Extrusion Process and Heat Treatment on the Properties of some AA6000 Extruded Profiles, Material Technology (MTAEC9), Vol. 39, No. 4, pp. 101-106, 2005.
[20]        N. Ejaz, W. Muhammad, I. U. Salam, Fatigue Crack Growth Behavior in a Rolled Plate of Aluminum Alloy, in Proceeding of, Trans Tech Publ, pp. 283-293.
[21]        W. Hosford, Mechanical behavior of materials-Cambridge Universtity Press, Cambridge, 2010.
[22]        R. Z. Valiev, N. Krasilnikov, N. Tsenev, Plastic deformation of alloys with submicron-grained structure, Materials Science and Engineering: A, Vol. 137, pp. 35-40, 1991.
[23]        Y. Wei, Anisotropic size effect in strength in coherent nanowires with tilted twins, Physical Review B, Vol. 84, No. 1, pp. 014107, 2011.
[24]        B. Q. Han, F. A. Mohamedh, E. J. Lavernia, In: Severe Plastic Deformation ISBN 1-59454-508-1 Editor: Burhanettin S. Altan, pp. 95-112© 2006 Nova Science Publishers, Inc, Severe Plastic Deformation: Toward Bulk Production of Nanostructured Materials, pp. 95, 2006.
[25]        G. Zhang, B. Li, J. Zhang, Z. Feng, Z. Wei, W. Cai, Unique cyclic deformation behavior of a heavily alloyed Al–Si piston alloy at different temperatures, Progress in Natural Science: Materials International, Vol. 22, No. 5, pp. 445-451, 2012.
[26]        J. M. Rosalie, H. Somekawa, A. Singh, T. Mukai, The effect of size and distribution of rod-shaped β1′ precipitates on the strength and ductility of a Mg–Zn alloy, Materials Science and Engineering: A, Vol. 539, pp. 230-237, 2012.
[27]        J. M. Rosalie, H. Somekawa, A. Singh, T. Mukai, Effect of precipitation on strength and ductility in a Mg–Zn–Y alloy, Journal of Alloys and Compounds, Vol. 550, pp. 114-123, 2013.
[28]        U. Krupp, 2007, Fatigue crack propagation in metals and alloys: microstructural aspects and modelling concepts, John Wiley & Sons,
[29]        C. Bjerkén, S. Melin, Growth of a short fatigue crack–A long term simulation using a dislocation technique, International Journal of Solids and Structures, Vol. 46, No. 5, pp. 1196-1204, 2009.
[30]        L. Borrego, L. Abreu, J. Costa, J. Ferreira, Analysis of low cycle fatigue in AlMgSi aluminium alloys, Engineering Failure Analysis, Vol. 11, No. 5, pp. 715-725, 2004.
[31]        R. T. Dewa, S. J. Kim, W. G. Kim, E. S. Kim, Effect of strain range on the low cycle fatigue in alloy 617 at high temperature, Metals, Vol. 7, No. 2, pp. 54, 2017.
[32]        F. C. Campbell, 2008, Elements of metallurgy and engineering alloys, ASM International,
[33]        M. O. Oyekeye, J. S. Ajiboye, S. O. Adeosun, Fatigue and Anisotropic behaviours of cold rolled AA1200 Aluminium Alloy.
[34]        J. Major, Porosity control and fatigue behavior in A356-T61 aluminum alloy, Transactions-American Foundrymens Society, pp. 901-906, 1998.
[35]        W. Roundi, A. Elgharad, Assessment of Fatigue Behavior and Effects of Crack Growth in Aluminium Alloys 6082 under Various Stress Ratios, International Journal on Advanced Science, Engineering and Information Technology, Vol. 6, No. 5, pp. 582-587, 2016.
Volume 49, Issue 2
December 2018
Pages 367-372
  • Receive Date: 13 April 2018
  • Revise Date: 04 May 2018
  • Accept Date: 07 May 2018