[1] T. Aksencer, M. Aydogdu, Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 4, pp. 954-959, 2011.
[2] R. Ansari, R. Rajabiehfard, B. Arash, Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets, Computational Materials Science, Vol. 49, No. 4, pp. 831-838, 2010.
[3] S. H. Hashemi, A. T. Samaei, Buckling analysis of micro/nanoscale plates via nonlocal elasticity theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 7, pp. 1400-1404, 2011.
[4] S. Narendar, Buckling analysis of micro-/nano-scale plates based on two-variable refined plate theory incorporating nonlocal scale effects, Composite Structures, Vol. 93, No. 12, pp. 3093-3103, 2011.
[5] A. Daneshmehr, A. Rajabpoor, A. Hadi, Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories, International Journal of Engineering Science, Vol. 95, pp. 23-35, 2015.
[6] A. BAKHSHESHY, K. KHORSHIDI, Free Vibration of Functionally Graded Rectangular Nanoplates in Thermal Environment Based on the Modified Couple Stress Theory, 2015.
[7] S. Hosseini-Hashemi, H. R. D. Taher, H. Akhavan, M. Omidi, Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory, Applied Mathematical Modelling, Vol. 34, No. 5, pp. 1276-1291, 2010.
[8] M. Zare, R. Nazemnezhad, S. Hosseini-Hashemi, Natural frequency analysis of functionally graded rectangular nanoplates with different boundary conditions via an analytical method, Meccanica, Vol. 50, No. 9, pp. 2391-2408, 2015.
[9] F. Bounouara, K. H. Benrahou, I. Belkorissat, A. Tounsi, A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation, Steel and Composite Structures, Vol. 20, No. 2, pp. 227-249, 2016.
[10] H. Salehipour, H. Nahvi, A. Shahidi, Exact closed-form free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimensional elasticity theories, Composite Structures, Vol. 124, pp. 283-291, 2015.
[11] I. Belkorissat, M. S. A. Houari, A. Tounsi, E. Bedia, S. Mahmoud, On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model, Steel and Composite Structures, Vol. 18, No. 4, pp. 1063-1081, 2015.
[12] R. Ansari, M. Ashrafi, T. Pourashraf, S. Sahmani, Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory, Acta Astronautica, Vol. 109, pp. 42-51, 2015.
[13] M. Hosseini, A. Jamalpoor, Analytical solution for thermomechanical vibration of double-viscoelastic nanoplate-systems made of functionally graded materials, Journal of Thermal Stresses, Vol. 38, No. 12, pp. 1428-1456, 2015.
[14] R. Ansari, M. F. Shojaei, A. Shahabodini, M. Bazdid-Vahdati, Three-dimensional bending and vibration analysis of functionally graded nanoplates by a novel differential quadrature-based approach, Composite Structures, Vol. 131, pp. 753-764, 2015.
[15] R. Aghababaei, J. Reddy, Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates, Journal of Sound and Vibration, Vol. 326, No. 1, pp. 277-289, 2009.
[16] R. B. Bouiadjra, E. Bedia, A. Tounsi, Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory, Structural Engineering and Mechanics, Vol. 48, No. 4, pp. 547-567, 2013.
[17] N.-T. Nguyen, D. Hui, J. Lee, H. Nguyen-Xuan, An efficient computational approach for size-dependent analysis of functionally graded nanoplates, Computer Methods in Applied Mechanics and Engineering, Vol. 297, pp. 191-218, 2015.
[18] A. Daneshmehr, A. Rajabpoor, Stability of size dependent functionally graded nanoplate based on nonlocal elasticity and higher order plate theories and different boundary conditions, International Journal of Engineering Science, Vol. 82, pp. 84-100, 2014.
[19] A. Ghorbanpour Arani, H. Baba Akbar Zarei, E. Haghparast, Application of Halpin-Tsai Method in Modelling and Size-dependent Vibration Analysis of CNTs/fiber/polymer Composite Microplates, Journal of Computational Applied Mechanics, Vol. 47, No. 1, pp. 45-52, 2016.
[20] M. Goodarzi, M. N. Bahrami, V. Tavaf, Refined plate theory for free vibration analysis of FG nanoplates using the nonlocal continuum plate model, Journal of Computational Applied Mechanics, Vol. 48, No. 1, pp. 123-136, 2017.
[21] H. Raissi, M. Shishehsaz, S. Moradi, Applications of higher order shear deformation theories on stress distribution in a five layer sandwich plate.
[22] M. H. Ghayesh, H. Farokhi, A. Gholipour, M. Tavallaeinejad, Nonlinear oscillations of functionally graded microplates, International Journal of Engineering Science, Vol. 122, pp. 56-72, 2018.
[23] M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy, International Journal of Applied Mechanics, Vol. 8, No. 04, pp. 1650048, 2016.
[24] M. H. Ghayesh, H. Farokhi, A. Gholipour, Oscillations of functionally graded microbeams, International Journal of Engineering Science, Vol. 110, pp. 35-53, 2017.
[25] N. Kordani, A. Fereidoon, M. Divsalar, A. Farajpour, Influence of surface piezoelectricity on the forced vibration of piezoelectric nanowires based on nonlocal elasticity theory, Journal of Computational Applied Mechanics, Vol. 47, No. 2, pp. 137-150, 2016.
[26] A. Farajpour, A. Rastgoo, Influence of carbon nanotubes on the buckling of microtubule bundles in viscoelastic cytoplasm using nonlocal strain gradient theory, Results in physics, Vol. 7, pp. 1367-1375, 2017.
[27] M. Hosseini, H. H. Gorgani, M. Shishesaz, A. Hadi, Size-Dependent Stress Analysis of Single-Wall Carbon Nanotube Based on Strain Gradient Theory, International Journal of Applied Mechanics, Vol. 9, No. 06, pp. 1750087, 2017.
[28] M. Hosseini, M. Shishesaz, K. N. Tahan, A. Hadi, Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials, International Journal of Engineering Science, Vol. 109, pp. 29-53, 2016.
[29] M. Z. Nejad, A. Rastgoo, A. Hadi, Effect of exponentially-varying properties on displacements and stresses in pressurized functionally graded thick spherical shells with using iterative technique, Journal of Solid Mechanics, Vol. 6, No. 4, pp. 366-377, 2014.
[30] M. Z. Nejad, A. Hadi, Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler–Bernoulli nano-beams, International Journal of Engineering Science, Vol. 106, pp. 1-9, 2016.
[31] M. Z. Nejad, A. Hadi, Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams, International Journal of Engineering Science, Vol. 105, pp. 1-11, 2016.
[32] M. Z. Nejad, A. Hadi, A. Farajpour, Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials, Structural Engineering and Mechanics, Vol. 63, No. 2, pp. 161-169, 2017.
[33] M. Z. Nejad, A. Hadi, A. Rastgoo, Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory, International Journal of Engineering Science, Vol. 103, pp. 1-10, 2016.
[34] M. Z. Nejad, A. Rastgoo, A. Hadi, Exact elasto-plastic analysis of rotating disks made of functionally graded materials, International Journal of Engineering Science, Vol. 85, pp. 47-57, 2014.
[35] M. Shishesaz, M. Hosseini, K. N. Tahan, A. Hadi, Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory, Acta Mechanica, Vol. 228, No. 12, pp. 4141-4168, 2017.
[36] A. Hadi, M. Z. Nejad, A. Rastgoo, M. Hosseini, Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory, Steel and Composite Structures, Vol. 26, No. 6, pp. 663-672, 2018.
[37] M. Zamani Nejad, M. Jabbari, A. Hadi, A review of functionally graded thick cylindrical and conical shells, Journal of Computational Applied Mechanics, Vol. 48, No. 2, pp. 357-370, 2017.
[38] A. Hadi, M. Z. Nejad, M. Hosseini, Vibrations of three-dimensionally graded nanobeams, International Journal of Engineering Science, Vol. 128, pp. 12-23, 2018.
[39] J. N. Reddy, A simple higher-order theory for laminated composite plates, Journal of applied mechanics, Vol. 51, No. 4, pp. 745-752, 1984.
[40] H.-S. Shen, Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments, International Journal of Mechanical Sciences, Vol. 44, No. 3, pp. 561-584, 2002.
[41] A. C. Eringen, 2002, Nonlocal continuum field theories, Springer Science & Business Media,
[42] S. Tajalli, M. M. Zand, M. Ahmadian, Effect of geometric nonlinearity on dynamic pull-in behavior of coupled-domain microstructures based on classical and shear deformation plate theories, European Journal of Mechanics-A/Solids, Vol. 28, No. 5, pp. 916-925, 2009.
[43] S. Natarajan, S. Chakraborty, M. Thangavel, S. Bordas, T. Rabczuk, Size-dependent free flexural vibration behavior of functionally graded nanoplates, Computational Materials Science, Vol. 65, pp. 74-80, 2012.