[1] A. F. Bower, 2009, Applied mechanics of solids, CRC press.
[2] M. Sasso, G. Palmieri, G. Chiappini, D. Amodio, Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods, Polymer Testing, Vol. 27, No. 8, pp. 995-1004, 2008.
[3] D. T. Casem, A. K. Dwivedi, R. A. Mrozek, J. L. Lenhart, Compression response of a thermoplastic elastomer gel tissue surrogate over a range of strain-rates, International Journal of Solids and Structures, Vol. 51, No. 11, pp. 2037-2046, 2014.
[4] L. Li, S. Ruan, L. Zeng, Mechanical properties and constitutive equations of concrete containing a low volume of tire rubber particles, Construction and Building Materials, Vol. 70, pp. 291-308, 2014.
[5] X. Li, T. Bai, Z. Li, L. Liu, Influence of the temperature on the hyper-elastic mechanical behavior of carbon black filled natural rubbers, Mechanics of Materials, Vol. 95, pp. 136-145, 2016.
[6] O. A. Shergold, N. A. Fleck, D. Radford, The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates, International Journal of Impact Engineering, Vol. 32, No. 9, pp. 1384-1402, 2006.
[7] T. Beda, Y. Chevalier, Hybrid continuum model for large elastic deformation of rubber, Journal of applied physics, Vol. 94, No. 4, pp. 2701-2706, 2003.
[8] T. Beda, An approach for hyperelastic model-building and parameters estimation a review of constitutive models, European Polymer Journal, Vol. 50, pp. 97-108, 2014.
[9] R. Ogden, G. Saccomandi, I. Sgura, Fitting hyperelastic models to experimental data, Computational Mechanics, Vol. 34, No. 6, pp. 484-502, 2004.
[10] K. Terada, J. Kato, N. Hirayama, T. Inugai, K. Yamamoto, A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials, Computational Mechanics, Vol. 52, No. 5, pp. 1199-1219, 2013.
[11] A. Gendy, A. Saleeb, Nonlinear material parameter estimation for characterizing hyper elastic large strain models, Computational mechanics, Vol. 25, No. 1, pp. 66-77, 2000.
[12] A. Drozdov, Constitutive equations in finite elasticity of rubbers, International Journal of Solids and Structures, Vol. 44, No. 1, pp. 272-297, 2007.
[13] H. Darijani, R. Naghdabadi, M. Kargarnovin, Hyperelastic materials modelling using a strain measure consistent with the strain energy postulates, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 224, No. 3, pp. 591-602, 2010.
[14] H. Darijani, R. Naghdabadi, Hyperelastic materials behavior modeling using consistent strain energy density functions, Acta mechanica, Vol. 213, No. 3, pp. 235-254, 2010.
[15] M. Mansouri, H. Darijani, Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach, International Journal of Solids and Structures, Vol. 51, No. 25, pp. 4316-4326, 2014.
[16] B. Fereidoonnezhad, R. Naghdabadi, J. Arghavani, A hyperelastic constitutive model for fiber-reinforced rubber-like materials, International Journal of Engineering Science, Vol. 71, pp. 36-44, 2013.
[17] J. H. Smith, J. J. García, Constitutive modeling of brain tissue using Ogden-type strain energy functions, in Proceeding of, 2140-2147.
[18] M. Hosseinzadeh, M. Ghoreishi, K. Narooei, Investigation of hyperelastic models for nonlinear elastic behavior of demineralized and deproteinized bovine cortical femur bone, Journal of the mechanical behavior of biomedical materials, Vol. 59, pp. 393-403, 2016.
[19] N. Elyasi, K. K. Taheri, K. Narooei, A. K. Taheri, A study of hyperelastic models for predicting the mechanical behavior of extensor apparatus, Biomechanics and modeling in mechanobiology, Vol. 16, No. 3, pp. 1077-1093, 2017.
[20] W.-Q. Wang, D.-K. Liang, D.-Z. Yang, M. Qi, Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method, Journal of Biomechanics, Vol. 39, No. 1, pp. 21-32, 2006.
[21] H. Zahedmanesh, C. Lally, Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis, Medical & biological engineering & computing, Vol. 47, No. 4, pp. 385, 2009.
[22] F. AURICCHIO∗, M. Di Loreto, E. Sacco, Finite-element analysis of a stenotic artery revascularization through a stent insertion, Computer Methods in Biomechanics and Biomedical Engineering, Vol. 4, No. 3, pp. 249-263, 2001.
[23] P. Prendergast, C. Lally, S. Daly, A. Reid, T. Lee, D. Quinn, F. Dolan, Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite-element modelling, Journal of biomechanical engineering, Vol. 125, No. 5, pp. 692-699, 2003.
[24] A. Karimi, M. Navidbakhsh, M. Alizadeh, A. Shojaei, A comparative study on the mechanical properties of the umbilical vein and umbilical artery under uniaxial loading, Artery Research, Vol. 8, No. 2, pp. 51-56, 2014.
[25] G. A. Holzapfel, G. Sommer, C. T. Gasser, P. Regitnig, Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling, American Journal of Physiology-Heart and Circulatory Physiology, Vol. 289, No. 5, pp. H2048-H2058, 2005.
[26] M. Imani, A. M. Goudarzi, D. D. Ganji, A. L. Aghili, The comprehensive finite element model for stenting: the influence of stent design on the outcome after coronary stent placement, Journal of Theoretical and Applied Mechanics, Vol. 51, No. 3, pp. 639-648, 2013.
[27] N. Eshghi, M. Hojjati, M. Imani, A. Goudarzi, Finite element analysis of mechanical behaviors of coronary stent, Procedia Engineering, Vol. 10, pp. 3056-3061, 2011.
[28] R. S. Rivlin, D. Saunders, Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 243, No. 865, pp. 251-288, 1951.
[29] R. W. Ogden, 1997, Non-linear elastic deformations, Courier Corporation,
[30] W. M. Lai, D. H. Rubin, E. Krempl, D. Rubin, 2009, Introduction to continuum mechanics, Butterworth-Heinemann,
[31] T. Belytschko, W. K. Liu, B. Moran, K. Elkhodary, 2013, Nonlinear finite elements for continua and structures, John wiley & sons,
[32] R. Ogden, Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids, in Proceeding of, The Royal Society, pp. 565-584.
[33] A. F. M. Arif, T. Pervez, M. P. Mughal, Performance of a finite element procedure for hyperelastic–viscoplastic large deformation problems, Finite elements in analysis and design, Vol. 34, No. 1, pp. 89-112, 2000.
[34] F. Etave, G. Finet, M. Boivin, J.-C. Boyer, G. Rioufol, G. Thollet, Mechanical properties of coronary stents determined by using finite element analysis, Journal of Biomechanics, Vol. 34, No. 8, pp. 1065-1075, 2001.
[35] F. Migliavacca, L. Petrini, V. Montanari, I. Quagliana, F. Auricchio, G. Dubini, A predictive study of the mechanical behaviour of coronary stents by computer modelling, Medical engineering & physics, Vol. 27, No. 1, pp. 13-18, 2005.
[36] L. Gu, S. Zhao, A. K. Muttyam, J. M. Hammel, The relation between the arterial stress and restenosis rate after coronary stenting, Journal of Medical Devices, Vol. 4, No. 3, pp. 031005, 2010.