[1] M. Koç, 2008, Hydroforming for advanced manufacturing, Elsevier,
[2] S.-H. Zhang, J. Danckert, Development of hydro-mechanical deep drawing, Journal of Materials Processing Technology, Vol. 83, No. 1, pp. 14-25, 1998.
[3] L. Lang, J. Danckert, K. B. Nielsen, Investigation into hydrodynamic deep drawing assisted by radial pressure: Part I. Experimental observations of the forming process of aluminum alloy, Journal of Materials Processing Technology, Vol. 148, No. 1, pp. 119-131, 2004.
[4] R. A. Ayres, Alloying aluminum with magnesium for ductility at warm temperatures (25 to 250 C), Metallurgical Transactions A, Vol. 10, No. 7, pp. 849-854, 1979.
[5] P. Groche, R. Huber, J. Dörr, D. Schmoeckel, Hydromechanical deep-drawing of aluminium-alloys at elevated temperatures, CIRP Annals-Manufacturing Technology, Vol. 51, No. 1, pp. 215-218, 2002.
[6] K. Nakamura, Warm deep drawability with hydraulic counter pressure of 1050 aluminum sheets, Japan Institute of Light Metals, Journal, Vol. 47, No. 6, pp. 323-328, 1997.
[7] H. Choi, M. Koç, J. Ni, A study on warm hydroforming of Al and Mg sheet materials: mechanism and proper temperature conditions, Journal of Manufacturing Science and Engineering, Vol. 130, No. 4, pp. 041007, 2008.
[8] M. Hosseinpour, A. Gorji, M. Bakhshi, On the experimental and numerical study of formability of Aluminum sheet in warm hydroforming process, Modares Mechanical Engineering, Vol. 15, No. 2, 2015.
[9] H. Gedikli, Ö. N. Cora, M. Koç, Comparative investigations on numerical modeling for warm hydroforming of AA5754-O aluminum sheet alloy, Materials & Design, Vol. 32, No. 5, pp. 2650-2662, 2011.
[10] A. Hashemi, M. H. Gollo, S. H. SEYEDKASHI, Process window diagram of conical cups in hydrodynamic deep drawing assisted by radial pressure, Transactions of Nonferrous Metals Society of China, Vol. 25, No. 9, pp. 3064-3071, 2015.
[11] R. K. Desu, S. K. Singh, A. K. Gupta, Comparative study of warm and hydromechanical deep drawing for low-carbon steel, The International Journal of Advanced Manufacturing Technology, Vol. 85, No. 1-4, pp. 661-672, 2016.
[12] Q.-F. Chang, D.-Y. Li, Y.-H. Peng, X.-Q. Zeng, Experimental and numerical study of warm deep drawing of AZ31 magnesium alloy sheet, International Journal of Machine Tools and Manufacture, Vol. 47, No. 3, pp. 436-443, 2007.
[13] S. Mahabunphachai, M. Koç, Investigations on forming of aluminum 5052 and 6061 sheet alloys at warm temperatures, Materials & Design (1980-2015), Vol. 31, No. 5, pp. 2422-2434, 2010.
[14] A. Ataee, E. Azarlu, Multi-objective Optimization of web profile of railway wheel using Bi-directional Evolutionary Structural Optimization, Journal of Computational Applied Mechanics, 2017.[15] J. H. Holland, 1992, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, MIT press,
[16] M. Sharififar, S. Akbari Mousavi, Numerical study and genetic algorithm optimization of hot extrusion process to produce rectangular waveguides, Journal of Computational Applied Mechanics, Vol. 47, No. 2, pp. 129-136, 2016.
[17] H. Mohammadi, M. Sharififar, A. A. Ataee, Numerical and Experimental Analysis and Optimization of Process Parameters of AA1050 Incremental Sheet Forming, Journal of Computational Applied Mechanics, Vol. 45, No. 1, pp. 35-45, 2014.
[18] K. Deb, 2001, Multi-objective optimization using evolutionary algorithms, John Wiley & Sons,
[19] Y. Aue-U-Lan, G. Ngaile, T. Altan, Optimizing tube hydroforming using process simulation and experimental verification, Journal of Materials Processing Technology, Vol. 146, No. 1, pp. 137-143, 2004.