[1] C. B, The contact pressure distribution in flat rolling of wire, J. Mat. Proc. Technol, Vol. 73, No. 1-3, pp. 6, January, 1998.
[2] Q. L. W He., Cryo-rolling enhanced inhomogeneous deformation and recrystallization grain growth of a zirconium alloy, J. of Alloy and Comp, Vol. 699, pp. 9, 2005.
[3] W. S. Hao P., Formation mechanism and control Methods of inhomogeneous deformation during hot rough rolling of aluminum alloy plate, Arch. of Civ. and Mech. Eng, Vol. 18, pp. 10, 2008.
[4] A. K. T. M. Kazeminezhad *, Deformation inhomogeneity in flattened copper wire, J. Mat. Des, Vol. 28, pp. 7, 2006.
[5] K. T. A. Kazeminezhad M., Experimental investigation on the deformation behavior during wire flat rolling process, J. Mat. Proc. Technol, Vol. 26, pp. 4, 2005.
[6] K. T. A. Kazeminezhad M., Experimental investigation on the deformation behavior during wire flat rolling process, J. Mat. Proc. Technol, Vol. 160, pp. 7, 2005.
[7] P. B. Parvizi A., Abrinia K., Akbari A, Analysis of curvature and width of the contact area in asymmetrical rolling of wire, J. Manuf. Proc, Vol. 20, pp. 5, 2015.
[8] P. B. Parvizi A., Abrinia K., Akbari A, An analytical approach to asymmetrical wire rolling process with finite element verification, Int. J. Adv. Manuf. Technol, Vol. 82, pp. 8, 2015.
[9] A. A. Salari M., Effect of micro structural inhomogeneities on texture evolution in 90-10 Brass sheets, J. Mat. Proc. Technol, Vol. 182, No. 1-3, pp. 5, 2016.
[10] R. S. Rohini G., Suwas S, Effect of mode of rolling on development of texture and microstructure in two-phase (α + β) brass, Mat. Sci. Eng, Vol. 527, pp. 10, 2010.
[11] M. S. Komkova T., Korznikov A., Myshlyaev MM., Semiatin SL, Grain structure evolution during cryogenic rolling of alpha brass, J. Alloy and Comp, Vol. 629, pp. 8, 2015.
[12] Z. X. Yan H., Jian N., Zheng Y., He T, Influence of Shear Banding on the Formation of Brass-type Textures in Polycrystalline fcc Metals with Low Stacking Fault Energy, J. of Mat. Sci. Technol, Vol. 30, No. 14, pp. 9, 2014.
[13] J. P. Polkowski W., Polanski M., Bojar Z, Microstructure and texture evolution of copper processed by differential speed rolling with various speed asymmetry coefficient, Mat. Sci. Eng. A, Vol. 564, pp. 8, 2013.
[14] X. R. D. Wang J.l., Wang S.H, Qian T.C, Shi Q.N, Formation mechanism and organizational controlling of ultra-fine-grain copper processed by asymmetrical accumulative rolling-bond and annealing, Trans. of Nonfer. Met. Soc. of China, Vol. 22, pp. 7, 2012.
[15] K. A. Stepanov N.D., Salishchev G.A, Raab G.I, Influence of cold rolling on microstructure and mechanical properties of copper subjected to ECAP with various numbers of passes, Mat. Sci. and Eng. A, Vol. 554, No. 30, pp. 10, 2012.
[16] H. M. Gu C.F., Toht L.S, Grain size dependent texture evolution in severely rolled processed of the pure copper, Mater. Charact, Vol. 101, pp. 9, 2015.
[17] E. A. Ucuncuoglu S., Secgin G.O, Duygulu O, Effect of asymmetric rolling process on the microstructure, mechanical properties and texture of AZ31 magnesium alloys sheets produced by twin roll casting technique, J. Magnes. Alloys, Vol. 2, pp. 7, 2014.
[18] L. S. U. Chen Y.L, Zhao M., Kual, Z. Li, Liu G.M, Effects of Rolling Parameters on Texture and Formability of High Strength Ultra-Low Carbon BH Steel, J. Iron. Steel Res. Int, Vol. 20, No. 6, pp. 7, 2013.