Ansari, R., Rouhi, S., Ahmadi, M. (2018). On the Thermal Conductivity of Carbon Nanotube/Polypropylene Nanocomposites by Finite Element Method. Journal of Computational Applied Mechanics, 49(1), 70-85. doi: 10.22059/jcamech.2017.243530.195

Reza Ansari; Saeed Rouhi; Masoud Ahmadi. "On the Thermal Conductivity of Carbon Nanotube/Polypropylene Nanocomposites by Finite Element Method". Journal of Computational Applied Mechanics, 49, 1, 2018, 70-85. doi: 10.22059/jcamech.2017.243530.195

Ansari, R., Rouhi, S., Ahmadi, M. (2018). 'On the Thermal Conductivity of Carbon Nanotube/Polypropylene Nanocomposites by Finite Element Method', Journal of Computational Applied Mechanics, 49(1), pp. 70-85. doi: 10.22059/jcamech.2017.243530.195

Ansari, R., Rouhi, S., Ahmadi, M. On the Thermal Conductivity of Carbon Nanotube/Polypropylene Nanocomposites by Finite Element Method. Journal of Computational Applied Mechanics, 2018; 49(1): 70-85. doi: 10.22059/jcamech.2017.243530.195

On the Thermal Conductivity of Carbon Nanotube/Polypropylene Nanocomposites by Finite Element Method

^{1}Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran

^{2}Young Researchers and Elite Club, Langroud Branch, Islamic Azad University, Langroud, Guilan, Iran

Receive Date: 11 October 2017,
Revise Date: 19 November 2017,
Accept Date: 27 November 2017

Abstract

In this paper, finite element method is used to obtain thermal conductivity coefficients of single-walled carbon nanotube reinforced polypropylene. For this purpose, the two-dimensional representative volume elements are modeled. The effect of different parameters such as nanotube dispersion pattern, nanotube volume percentage in polymer matrix, interphase thickness between nanotube and surrounded matrix and nanotube aspect ratio on the thermal conductivity coefficient of nanotube/polypropylene nanocomposite are investigated. For the dispersion pattern, three different algorithms, including random dispersion, regular dispersion along the temperature difference and regular dispersion perpendicular to the temperature difference are employed. Furthermore, the temperature is considered in the range of 0°C to 200°C. The nanotube volume percentage in the polymer matrix is selected as 1%, 3% and 5%. It is shown that the polypropylene matrix reinforced by the regular distribution of nanotubes directed parallel to the temperature difference leads to the largest thermal conductivity coefficients. Besides, the nanocomposites with larger volume percentages of carbon nanotubes possess larger thermal conductivity coefficients.

[1] S. Iijima, Helical microtubules of graphitic carbon, nature, Vol. 354, No. 6348, pp. 56, 1991.

[2] M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, 2012.

[3] M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.

[4] S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, No. 9, pp. 1515-1540, 2014.

[5] M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, No. 3, pp. 437-458, 2014.

[6] M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation, 2014.

[7] M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature effect on vibration analysis of annular graphene sheet embedded on visco-Pasternak foundation, 2013.

[8] P. Malekzadeh, A. Farajpour, Axisymmetric free and forced vibrations of initially stressed circular nanoplates embedded in an elastic medium, Acta Mechanica, Vol. 223, No. 11, pp. 2311-2330, 2012.

[9] M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, No. 8, pp. 2207-2232, 2016.

[10] M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, Journal of Solid Mechanics, Vol. 7, No. 3, pp. 299-311, 2015.

[11] M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy, International Journal of Applied Mechanics, Vol. 8, No. 04, pp. 1650048, 2016.

[12] M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.

[13] M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.

[14] H. Moosavi, M. Mohammadi, A. Farajpour, S. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011.

[15] A. Farajpour, A. Rastgoo, M. Farajpour, Nonlinear buckling analysis of magneto-electro-elastic CNT-MT hybrid nanoshells based on the nonlocal continuum mechanics, Composite Structures, Vol. 180, pp. 179-191, 2017.

[16] S. Rouhi, Y. Alizadeh, R. Ansari, On the interfacial characteristics of polyethylene/single-walled carbon nanotubes using molecular dynamics simulations, Applied Surface Science, Vol. 292, pp. 958-970, 2014.

[17] S. Rouhi, Y. Alizadeh, R. Ansari, Molecular dynamics simulations of the single-walled carbon nanotubes/poly (phenylacetylene) nanocomposites, Superlattices and Microstructures, Vol. 72, pp. 204-218, 2014.

[18] S. Rouhi, Y. Alizadeh, R. Ansari, On the elastic properties of single-walled carbon nanotubes/poly (ethylene oxide) nanocomposites using molecular dynamics simulations, Journal of molecular modeling, Vol. 22, No. 1, pp. 41, 2016.

[19] S. Rouhi, Y. Alizadeh, R. Ansari, M. Aryayi, Using molecular dynamics simulations and finite element method to study the mechanical properties of nanotube reinforced polyethylene and polyketone, Modern Physics Letters B, Vol. 29, No. 26, pp. 1550155, 2015.

[20] S. Rouhi, R. Ansari, M. Ahmadi, Finite element investigation into the thermal conductivity of carbon nanotube/aluminum nanocomposites, Modern Physics Letters B, Vol. 31, No. 06, pp. 1750053, 2017.

[21] R. Ansari, S. Rouhi, M. Eghbalian, On the elastic properties of curved carbon nanotubes/polymer nanocomposites: A modified rule of mixture, Journal of Reinforced Plastics and Composites, Vol. 36, No. 14, pp. 991-1008, 2017.

[22] S. Rouhi, S. H. Alavi, On the mechanical properties of functionally graded materials reinforced by carbon nanotubes, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, pp. 0954406217706096, 2017.

[23] M. Ahmadi, R. Ansari, S. Rouhi, Finite element investigation of temperature dependence of elastic properties of carbon nanotube reinforced polypropylene, The European Physical Journal Applied Physics, Vol. 80, No. 3, pp. 30401, 2017.

[24] R. S. Ruoff, D. C. Lorents, Mechanical and thermal properties of carbon nanotubes, carbon, Vol. 33, No. 7, pp. 925-930, 1995.

[25] J. Che, T. Cagin, W. A. Goddard III, Thermal conductivity of carbon nanotubes, Nanotechnology, Vol. 11, No. 2, pp. 65, 2000.

[26] K. I. Winey, T. Kashiwagi, M. Mu, Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers, Mrs Bulletin, Vol. 32, No. 4, pp. 348-353, 2007.

[27] S.-Y. Yang, C.-C. M. Ma, C.-C. Teng, Y.-W. Huang, S.-H. Liao, Y.-L. Huang, H.-W. Tien, T.-M. Lee, K.-C. Chiou, Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites, Carbon, Vol. 48, No. 3, pp. 592-603, 2010.

[28] A. M. Marconnet, N. Yamamoto, M. A. Panzer, B. L. Wardle, K. E. Goodson, Thermal conduction in aligned carbon nanotube–polymer nanocomposites with high packing density, ACS nano, Vol. 5, No. 6, pp. 4818-4825, 2011.

[29] W. Park, K. Choi, K. Lafdi, C. Yu, Influence of nanomaterials in polymer composites on thermal conductivity, Journal of Heat Transfer, Vol. 134, No. 4, pp. 041302, 2012.

[30] R. Gulotty, M. Castellino, P. Jagdale, A. Tagliaferro, A. A. Balandin, Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube–polymer nanocomposites, ACS nano, Vol. 7, No. 6, pp. 5114-5121, 2013.

[31] H. Liem, H. Choy, Superior thermal conductivity of polymer nanocomposites by using graphene and boron nitride as fillers, Solid State Communications, Vol. 163, pp. 41-45, 2013.

[32] S. Araby, Q. Meng, L. Zhang, H. Kang, P. Majewski, Y. Tang, J. Ma, Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing, Polymer, Vol. 55, No. 1, pp. 201-210, 2014.

[33] R. S. Kapadia, B. M. Louie, P. R. Bandaru, The influence of carbon nanotube aspect ratio on thermal conductivity enhancement in nanotube–polymer composites, Journal of Heat Transfer, Vol. 136, No. 1, pp. 011303, 2014.

[34] P. Ding, S. Su, N. Song, S. Tang, Y. Liu, L. Shi, Influence on thermal conductivity of polyamide-6 covalently-grafted graphene nanocomposites: varied grafting-structures by controllable macromolecular length, RSC Advances, Vol. 4, No. 36, pp. 18782-18791, 2014.

[35] Y. Çelik, A. Çelik, E. Flahaut, E. Suvaci, Anisotropic mechanical and functional properties of graphene-based alumina matrix nanocomposites, Journal of the European Ceramic Society, Vol. 36, No. 8, pp. 2075-2086, 2016.

[36] T. C. Clancy, T. S. Gates, Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites, Polymer, Vol. 47, No. 16, pp. 5990-5996, 2006.

[37] A. Bagchi, S. Nomura, On the effective thermal conductivity of carbon nanotube reinforced polymer composites, Composites science and technology, Vol. 66, No. 11-12, pp. 1703-1712, 2006.

[38] C. Guthy, F. Du, S. Brand, K. I. Winey, J. E. Fischer, Thermal conductivity of single-walled carbon nanotube/PMMA nanocomposites, Journal of heat transfer, Vol. 129, No. 8, pp. 1096-1099, 2007.

[39] J. Yu, T. E. Lacy Jr, H. Toghiani, C. U. Pittman Jr, Micromechanically-based effective thermal conductivity estimates for polymer nanocomposites, Composites Part B: Engineering, Vol. 53, pp. 267-273, 2013.

[40] B. Mortazavi, M. Baniassadi, J. Bardon, S. Ahzi, Modeling of two-phase random composite materials by finite element, Mori–Tanaka and strong contrast methods, Composites Part B: Engineering, Vol. 45, No. 1, pp. 1117-1125, 2013.

[41] B. Mortazavi, J. Bardon, S. Ahzi, Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study, Computational Materials Science, Vol. 69, pp. 100-106, 2013.

[42] B. Mortazavi, O. Benzerara, H. Meyer, J. Bardon, S. Ahzi, Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites, Carbon, Vol. 60, pp. 356-365, 2013.

[43] B. Mortazavi, F. Hassouna, A. Laachachi, A. Rajabpour, S. Ahzi, D. Chapron, V. Toniazzo, D. Ruch, Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite polymer nanocomposites, Thermochimica Acta, Vol. 552, pp. 106-113, 2013.

[44] E. Fiamegkou, N. Athanasopoulos, V. Kostopoulos, Prediction of the effective thermal conductivity of carbon nanotube‐reinforced polymer systems, Polymer Composites, Vol. 35, No. 10, pp. 1997-2009, 2014.

[45] I. E. Afrooz, A. Öchsner, Effect of the Carbon Nanotube Distribution on the Thermal Conductivity of Composite Materials, Journal of Heat Transfer, Vol. 137, No. 3, pp. 034501, 2015.

[46] Y. Wang, C. Yang, Q.-X. Pei, Y. Zhang, Some aspects of thermal transport across the interface between graphene and epoxy in nanocomposites, ACS applied materials & interfaces, Vol. 8, No. 12, pp. 8272-8279, 2016.

[47] M. A. Osman, D. Srivastava, Temperature dependence of the thermal conductivity of single-wall carbon nanotubes, Nanotechnology, Vol. 12, No. 1, pp. 21, 2001.

[48] A. Dawson, M. Rides, J. Urquhart, C. Brown, Thermal conductivity of polymer melts and implications of uncertainties in data for process simulation, Cerca con Google, 2000.

[49] Y. S. Song, J. R. Youn, Evaluation of effective thermal conductivity for carbon nanotube/polymer composites using control volume finite element method, Carbon, Vol. 44, No. 4, pp. 710-717, 2006.