References
[1] S. Iijima, Helical microtubules of graphitic carbon, nature, Vol. 354, No. 6348, pp. 56, 1991.
[2] M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, 2012.
[3] M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[4] S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, No. 9, pp. 1515-1540, 2014.
[5] M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, No. 3, pp. 437-458, 2014.
[6] M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation, 2014.
[7] M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature effect on vibration analysis of annular graphene sheet embedded on visco-Pasternak foundation, 2013.
[8] P. Malekzadeh, A. Farajpour, Axisymmetric free and forced vibrations of initially stressed circular nanoplates embedded in an elastic medium, Acta Mechanica, Vol. 223, No. 11, pp. 2311-2330, 2012.
[9] M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, No. 8, pp. 2207-2232, 2016.
[10] M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, Journal of Solid Mechanics, Vol. 7, No. 3, pp. 299-311, 2015.
[11] M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy, International Journal of Applied Mechanics, Vol. 8, No. 04, pp. 1650048, 2016.
[12] M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
[13] M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[14] H. Moosavi, M. Mohammadi, A. Farajpour, S. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011.
[15] A. Farajpour, A. Rastgoo, M. Farajpour, Nonlinear buckling analysis of magneto-electro-elastic CNT-MT hybrid nanoshells based on the nonlocal continuum mechanics, Composite Structures, Vol. 180, pp. 179-191, 2017.
[16] S. Rouhi, Y. Alizadeh, R. Ansari, On the interfacial characteristics of polyethylene/single-walled carbon nanotubes using molecular dynamics simulations, Applied Surface Science, Vol. 292, pp. 958-970, 2014.
[17] S. Rouhi, Y. Alizadeh, R. Ansari, Molecular dynamics simulations of the single-walled carbon nanotubes/poly (phenylacetylene) nanocomposites, Superlattices and Microstructures, Vol. 72, pp. 204-218, 2014.
[18] S. Rouhi, Y. Alizadeh, R. Ansari, On the elastic properties of single-walled carbon nanotubes/poly (ethylene oxide) nanocomposites using molecular dynamics simulations, Journal of molecular modeling, Vol. 22, No. 1, pp. 41, 2016.
[19] S. Rouhi, Y. Alizadeh, R. Ansari, M. Aryayi, Using molecular dynamics simulations and finite element method to study the mechanical properties of nanotube reinforced polyethylene and polyketone, Modern Physics Letters B, Vol. 29, No. 26, pp. 1550155, 2015.
[20] S. Rouhi, R. Ansari, M. Ahmadi, Finite element investigation into the thermal conductivity of carbon nanotube/aluminum nanocomposites, Modern Physics Letters B, Vol. 31, No. 06, pp. 1750053, 2017.
[21] R. Ansari, S. Rouhi, M. Eghbalian, On the elastic properties of curved carbon nanotubes/polymer nanocomposites: A modified rule of mixture, Journal of Reinforced Plastics and Composites, Vol. 36, No. 14, pp. 991-1008, 2017.
[22] S. Rouhi, S. H. Alavi, On the mechanical properties of functionally graded materials reinforced by carbon nanotubes, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, pp. 0954406217706096, 2017.
[23] M. Ahmadi, R. Ansari, S. Rouhi, Finite element investigation of temperature dependence of elastic properties of carbon nanotube reinforced polypropylene, The European Physical Journal Applied Physics, Vol. 80, No. 3, pp. 30401, 2017.
[24] R. S. Ruoff, D. C. Lorents, Mechanical and thermal properties of carbon nanotubes, carbon, Vol. 33, No. 7, pp. 925-930, 1995.
[25] J. Che, T. Cagin, W. A. Goddard III, Thermal conductivity of carbon nanotubes, Nanotechnology, Vol. 11, No. 2, pp. 65, 2000.
[26] K. I. Winey, T. Kashiwagi, M. Mu, Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers, Mrs Bulletin, Vol. 32, No. 4, pp. 348-353, 2007.
[27] S.-Y. Yang, C.-C. M. Ma, C.-C. Teng, Y.-W. Huang, S.-H. Liao, Y.-L. Huang, H.-W. Tien, T.-M. Lee, K.-C. Chiou, Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites, Carbon, Vol. 48, No. 3, pp. 592-603, 2010.
[28] A. M. Marconnet, N. Yamamoto, M. A. Panzer, B. L. Wardle, K. E. Goodson, Thermal conduction in aligned carbon nanotube–polymer nanocomposites with high packing density, ACS nano, Vol. 5, No. 6, pp. 4818-4825, 2011.
[29] W. Park, K. Choi, K. Lafdi, C. Yu, Influence of nanomaterials in polymer composites on thermal conductivity, Journal of Heat Transfer, Vol. 134, No. 4, pp. 041302, 2012.
[30] R. Gulotty, M. Castellino, P. Jagdale, A. Tagliaferro, A. A. Balandin, Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube–polymer nanocomposites, ACS nano, Vol. 7, No. 6, pp. 5114-5121, 2013.
[31] H. Liem, H. Choy, Superior thermal conductivity of polymer nanocomposites by using graphene and boron nitride as fillers, Solid State Communications, Vol. 163, pp. 41-45, 2013.
[32] S. Araby, Q. Meng, L. Zhang, H. Kang, P. Majewski, Y. Tang, J. Ma, Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing, Polymer, Vol. 55, No. 1, pp. 201-210, 2014.
[33] R. S. Kapadia, B. M. Louie, P. R. Bandaru, The influence of carbon nanotube aspect ratio on thermal conductivity enhancement in nanotube–polymer composites, Journal of Heat Transfer, Vol. 136, No. 1, pp. 011303, 2014.
[34] P. Ding, S. Su, N. Song, S. Tang, Y. Liu, L. Shi, Influence on thermal conductivity of polyamide-6 covalently-grafted graphene nanocomposites: varied grafting-structures by controllable macromolecular length, RSC Advances, Vol. 4, No. 36, pp. 18782-18791, 2014.
[35] Y. Çelik, A. Çelik, E. Flahaut, E. Suvaci, Anisotropic mechanical and functional properties of graphene-based alumina matrix nanocomposites, Journal of the European Ceramic Society, Vol. 36, No. 8, pp. 2075-2086, 2016.
[36] T. C. Clancy, T. S. Gates, Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites, Polymer, Vol. 47, No. 16, pp. 5990-5996, 2006.
[37] A. Bagchi, S. Nomura, On the effective thermal conductivity of carbon nanotube reinforced polymer composites, Composites science and technology, Vol. 66, No. 11-12, pp. 1703-1712, 2006.
[38] C. Guthy, F. Du, S. Brand, K. I. Winey, J. E. Fischer, Thermal conductivity of single-walled carbon nanotube/PMMA nanocomposites, Journal of heat transfer, Vol. 129, No. 8, pp. 1096-1099, 2007.
[39] J. Yu, T. E. Lacy Jr, H. Toghiani, C. U. Pittman Jr, Micromechanically-based effective thermal conductivity estimates for polymer nanocomposites, Composites Part B: Engineering, Vol. 53, pp. 267-273, 2013.
[40] B. Mortazavi, M. Baniassadi, J. Bardon, S. Ahzi, Modeling of two-phase random composite materials by finite element, Mori–Tanaka and strong contrast methods, Composites Part B: Engineering, Vol. 45, No. 1, pp. 1117-1125, 2013.
[41] B. Mortazavi, J. Bardon, S. Ahzi, Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study, Computational Materials Science, Vol. 69, pp. 100-106, 2013.
[42] B. Mortazavi, O. Benzerara, H. Meyer, J. Bardon, S. Ahzi, Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites, Carbon, Vol. 60, pp. 356-365, 2013.
[43] B. Mortazavi, F. Hassouna, A. Laachachi, A. Rajabpour, S. Ahzi, D. Chapron, V. Toniazzo, D. Ruch, Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite polymer nanocomposites, Thermochimica Acta, Vol. 552, pp. 106-113, 2013.
[44] E. Fiamegkou, N. Athanasopoulos, V. Kostopoulos, Prediction of the effective thermal conductivity of carbon nanotube‐reinforced polymer systems, Polymer Composites, Vol. 35, No. 10, pp. 1997-2009, 2014.
[45] I. E. Afrooz, A. Öchsner, Effect of the Carbon Nanotube Distribution on the Thermal Conductivity of Composite Materials, Journal of Heat Transfer, Vol. 137, No. 3, pp. 034501, 2015.
[46] Y. Wang, C. Yang, Q.-X. Pei, Y. Zhang, Some aspects of thermal transport across the interface between graphene and epoxy in nanocomposites, ACS applied materials & interfaces, Vol. 8, No. 12, pp. 8272-8279, 2016.
[47] M. A. Osman, D. Srivastava, Temperature dependence of the thermal conductivity of single-wall carbon nanotubes, Nanotechnology, Vol. 12, No. 1, pp. 21, 2001.
[48] A. Dawson, M. Rides, J. Urquhart, C. Brown, Thermal conductivity of polymer melts and implications of uncertainties in data for process simulation, Cerca con Google, 2000.
[49] Y. S. Song, J. R. Youn, Evaluation of effective thermal conductivity for carbon nanotube/polymer composites using control volume finite element method, Carbon, Vol. 44, No. 4, pp. 710-717, 2006.