[1] J. J. Martell, C. R. Liu, J. Shi, Experimental investigation on variation of machined residual stresses by turning and grinding of hardened AISI 1053 steel, The International Journal of Advanced Manufacturing Technology, Vol. 74, No. 9-12, pp. 1381-1392, 2014.
[2] O. Fergani, Y. Shao, I. Lazoglu, S. Y. Liang, Temperature effects on grinding residual stress, Procedia CIRP, Vol. 14, pp. 2-6, 2014.
[3] Y. Deng, S. Xiu, Research on microstructure evolution of austenitization in grinding hardening by cellular automata simulation and experiment, The International Journal of Advanced Manufacturing Technology, pp. 1-14, 2017.
[4] C. Yao, T. Wang, J. Ren, W. Xiao, A comparative study of residual stress and affected layer in Aermet100 steel grinding with alumina and cBN wheels, The International Journal of Advanced Manufacturing Technology, Vol. 74, No. 1-4, pp. 125-137, 2014.
[5] Y. Xiao, A. Konak, A simulating annealing algorithm to solve the green vehicle routing & scheduling problem with hierarchical objectives and weighted tardiness, Applied Soft Computing, Vol. 34, pp. 372-388, 2015.
[6] C. A. Floudas, P. M. Pardalos, 2014, Recent advances in global optimization, princeton University press,
[7] S.-m. Ahn, S.-Y. Park, Y.-C. Kim, K.-S. Lee, J.-Y. Kim, Surface residual stress in soda-lime glass evaluated using instrumented spherical indentation testing, Journal of materials science, Vol. 50, No. 23, pp. 7752-7759, 2015.
[8] K. Deb, Multi-objective optimization, in: Search methodologies, Eds., pp. 403-449: Springer, 2014.
[9] M. Azadi Moghaddam, F. Kolahan, An empirical study on statistical analysis and optimization of EDM process parameters for inconel 718 super alloy using D-optimal approach and genetic algorithm, Journal of Computational Applied Mechanics, Vol. 46, No. 2, pp. 267-277, 2015.
[10] K. Salonitis, A. Kolios, Experimental and numerical study of grind-hardening-induced residual stresses on AISI 1045 Steel, International Journal of Advanced Manufacturing Technology, Vol. 79, 2015.
[11] A. D. Batako, M. Morgan, B. W. Rowe, High efficiency deep grinding with very high removal rates, The International Journal of Advanced Manufacturing Technology, Vol. 66, No. 9-12, pp. 1367-1377, 2013.
[12] W. B. Rowe, 2013, Principles of modern grinding technology, William Andrew,
[13] G. Khalaj, H. Yoozbashizadeh, A. Khodabandeh, A. Nazari, Artificial neural network to predict the effect of heat treatments on Vickers microhardness of low-carbon Nb microalloyed steels, Neural Computing and Applications, Vol. 22, No. 5, pp. 879-888, 2013.
[14] A. Bayat, R. Moharami, Numerical Analysis of explosion effects on the redistribution of residual stresses in the underwater welded pipe, Journal of Computational Applied Mechanics, Vol. 47, No. 1, pp. 121-128, 2016.
[15] Y. Zhang, X. J. Meng, Z. J. Yuan, Study of Grinding Hardening Force Based on the Influence of Grinding Arc Temperature and Workpiece Deformation, in Proceeding of, Trans Tech Publ, pp. 98-103.
[16] Y. Shao, O. Fergani, Z. Ding, B. Li, S. Y. Liang, Experimental investigation of residual stress in minimum quantity lubrication grinding of AISI 1018 steel, Journal of Manufacturing Science and Engineering, Vol. 138, No. 1, pp. 011009, 2016.
[17] M. Hamedi, H. Eisazadeh, Numerical Simulation of Nugget Geometry and Temperature Distribution in Resistance Spot Welding, Journal of Computational Applied Mechanics, Vol. 46, No. 1, pp. 13-19, 2015.
[18] K. Salonitis, On surface grind hardening induced residual stresses, Procedia CIRP, Vol. 13, pp. 264-269, 2014.
[19] U. Alonso, N. Ortega, J. A. Sanchez, I. Pombo, S. Plaza, B. Izquierdo, In-process prediction of the hardened layer in cylindrical traverse grind-hardening, The International Journal of Advanced Manufacturing Technology, Vol. 71, No. 1-4, pp. 101-108, 2014.
[20] U. Alonso, N. Ortega, J. Sanchez, I. Pombo, B. Izquierdo, S. Plaza, Hardness control of grind-hardening and finishing grinding by means of area-based specific energy, International Journal of Machine Tools and Manufacture, Vol. 88, pp. 24-33, 2015.