[1] S. Kiwan, A. Al-Nimr. Using Porous Fins for Heat Transfer Enhancement. ASME J. Heat Transfer 2001; 123:790–5.
[2] S. Kiwan, Effect of radiative losses on the heat transfer from porous fins. Int. J. Therm. Sci. 46(2007a)., 1046-1055
[3] S. Kiwan. Thermal analysis of natural convection porous fins. Tran. Porous Media 67(2007b), 17-29.
[4] S. Kiwan, O. Zeitoun, Natural convection in a horizontal cylindrical annulus using porous fins. Int. J. Numer. Heat Fluid Flow 18 (5)(2008), 618-634.
[5] R. S. Gorla, A. Y. Bakier. Thermal analysis of natural convection and radiation in porous fins. Int. Commun. Heat Mass Transfer 38(2011), 638-645.
[6] B. Kundu, D. Bhanji. An analytical prediction for performance and optimum design analysis of porous fins. Int. J. Refrigeration 34(2011), 337-352.
[7] B. Kundu, D. Bhanja, K. S. Lee. A model on the basis of analytics for computing maximum heat transfer in porous fins. Int. J. Heat Mass Transfer 55 (25-26)(2012) 7611-7622.
[8] Taklifi, C. Aghanajafi, H. Akrami. The effect of MHD on a porous fin attached to a vertical isothermal surface. Transp Porous Med. 85(2010) 215–31.
[9] D. Bhanja, B. Kundu. Thermal analysis of a constructal T-shaped porous fin with radiation effects. Int J Refrigerat 34(2011) 1483–96.
[10] B. Kundu, Performance and optimization analysis of SRC profile fins subject to simultaneous heat and mass transfer. Int. J. Heat Mass Transfer 50(2007) 1545-1558.
[11] S. Saedodin, S. Sadeghi, S. Temperature distribution in long porous fins in natural convection condition. Middle-east J. Sci. Res. 13 (6)(2013) 812-817.
[12] S. Saedodin, M. Olank, 2011. Temperature Distribution in Porous Fins in Natural Convection Condition, Journal of American Science 7(6)(2011) 476-481.
[13] M. T. Darvishi, R. Gorla, R.S., Khani, F., Aziz, A.-E. Thermal performance of a porus radial fin with natural convection and radiative heat losses. Thermal Science, 19(2) (2015) 669-678.
[14] M. Hatami , D. D. Ganji. Thermal performance of circular convective-radiative porous fins with different section shapes and materials. Energy Conversion and Management, 76(2013)185−193.
[15] M. Hatami , D. D. Ganji. Thermal behavior of longitudinal convective–radiative porous fins with different section shapes and ceramic materials (SiC and Si3N4). International of J. Ceramics International, 40(2014), 6765−6775.
[16] M. Hatami, A. Hasanpour, D. D. Ganji, Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation. Energ. Convers. Manage. 74(2013) 9-16.
[17] M. Hatami , D. D. Ganji. Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis. International Journal of Refrigeration, 40(2014) 140−151.
[18] M. Hatami, G. H. R. M. Ahangar, D. D. Ganji,, K. Boubaker. Refrigeration efficiency analysis for fully wet semi-spherical porous fins. Energy Conversion and Management, 84(2014) 533−540.
[19] R. Gorla, R.S., Darvishi, M. T. Khani, F. Effects of variable Thermal conductivity on natural convection and radiation in porous fins. Int. Commun. Heat Mass Transfer 38(2013), 638-645.
[20] Moradi, A., Hayat, T. and Alsaedi, A. Convective-radiative thermal analysis of triangular fins with temperature-dependent thermal conductivity by DTM. Energy Conversion and Management 77 (2014) 70–77
[21] S. Saedodin. M. Shahbabaei. Thermal Analysis of Natural Convection in Porous Fins with Homotopy Perturbation Method (HPM). Arab J Sci Eng (2013) 38:2227–2231.
[22] H. Ha, Ganji D. D and Abbasi M. Determination of Temperature Distribution for Porous Fin with Temperature-Dependent Heat Generation by Homotopy Analysis Method. J Appl Mech Eng., 4(1) (2005).
[23] H. A. Hoshyar, I. Rahimipetroudi, D. D. Ganji, A. R. Majidian. Thermal performance of porous fins with temperature-dependent heat generation via Homotopy perturbation method and collocation method. Journal of Applied Mathematics and Computational Mechanics. 14(4) (2015), 53-65.
[24] Y. Rostamiyan,, D. D. Ganji , I. R. Petroudi, and M. K. Nejad. Analytical Investigation of Nonlinear Model Arising in Heat Transfer Through the Porous Fin.Thermal Science. 18(2)(2014), 409-417.
[25] S. E. Ghasemi, P. Valipour, M. Hatami, D. D. Ganji.. Heat transfer study on solid and porous convective fins with temperature-dependent heat -generation using efficient analytical method J. Cent. South Univ. 21(2014), 4592−4598.
[26] D.D. Ganji, A.S. Dogonchi, Analytical investigation of convective heat transfer of a longitudinal fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation, Int. J. Phys. Sci. 9 (21) (2014), 466–474.
[27] S. Dogonchi and D. D. Ganji Convection-radiation heat transfer study of moving fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation. Applied thermal engineering 103 (2016) 705-712.
[28] Aziz and M. N. Bouaziz. A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity. Energ Conver and Manage, 52(2011): 2876−2882.
[29] Fernandez. On some approximate methods for nonlinear models. Appl Math Comput., 215(2009). :168-74.
[30] D. Gottlieb, S.A. Orszag, Numerical analysis of spectral methods: Theory and applications, in: Regional Conference Series in Applied Mathematics, vol. 28, SIAM, Philadelphia, 1977, pp. 1–168.
[31] Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, New York, 1988.
[32] R. Peyret, Spectral Methods for Incompressible Viscous Flow, SpringerVerlag, New York, 2002.
[33] F.B. Belgacem, M. Grundmann, Approximation of the wave and electromagnetic diffusion equations by spectral methods, SIAM Journal on Scientific Computing 20 (1), (1998), 13–32.
[34] X.W. Shan, D. Montgomery, H.D. Chen, Nonlinear magnetohydrodynamics by Galerkin-method computation, Physical Review A 44 (10) (1991) 6800–6818.
[35] X.W. Shan, Magnetohydrodynamic stabilization through rotation, Physical Review Letters 73 (12) (1994) 1624–1627.
[36] J.P. Wang, Fundamental problems in spectral methods and finite spectral method, Sinica Acta Aerodynamica 19 (2) (2001) 161–171.
[37] E.M.E. Elbarbary, M. El-kady, Chebyshev finite difference approximation for the boundary value problems, Applied Mathematics and Computation 139 (2003) 513–523.
[38] Z.J. Huang, and Z.J. Zhu, Chebyshev spectral collocation method for solution of Burgers’ equation and laminar natural convection in two-dimensional cavities,Bachelor Thesis, University of Science and Technology of China, Hefei, 2009.
[39] N.T. Eldabe, M.E.M. Ouaf, Chebyshev finite difference method for heat and mass transfer in a hydromagnetic flow of a micropolar fluid past a stretching surface with Ohmic heating and viscous dissipation, Applied Mathematics and Computation 177 (2006) 561–571.
[40] A.H. Khater, R.S. Temsah, M.M. Hassan, A Chebyshev spectral collocation method for solving Burgers'-type equations, Journal of Computational and Applied Mathematics 222 (2008) 333–350.
[41] Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dynamics, Springer, New York, 1988.
[42] E.H. Doha, A.H. Bhrawy, Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials, Appl. Numer. Math. 58 (2008) 1224–1244.
[43] E.H. Doha, A.H. Bhrawy, Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations, Numer. Methods Partial Differential Equations 25 (2009) 712–739.
[44] E.H. Doha, A.H. Bhrawy, R.M. Hafez, A Jacobi–Jacobi dual-Petrov–Galerkin method for third- and fifth-order differential equations, Math. Computer Modelling 53 (2011) 1820–1832.
[45] E.H. Doha, A.H. Bhrawy, S.S. Ezzeldeen, Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations, Appl. Math. Model. (2011) doi:10.1016/j.apm.2011.05.011.