Prediction of Temperature distribution in Straight Fin with variable Thermal Conductivity and Internal Heat Generation using Legendre Wavelet Collocation Method

Document Type: Research Paper

Authors

1 Works and Physical Planning Department, University of Lagos, Akoka, Lagos, Nigeria.

2 School of Electrical Engineering and Computer Science, Faculty of Engineering and Informatics, University of Bradford, West Yorkshire, UK.

Abstract

Due to increasing applications of extended surfaces as passive methods of cooling, study of thermal behaviors and development of mathematical solutions to nonlinear thermal models of extended surfaces have been the subjects of research in cooling technology over the years. In the thermal analysis of fin, various methods have been applied to solve the nonlinear thermal models. This paper focuses on the application of Legendre wavelet collocation method to the prediction of temperature distribution in longitudinal rectangular fin with temperature-dependent thermal conductivity and internal heat generation. The numerical approximations by the method are used to carry out parametric studies of the effects of the model parameters on the temperature distribution in the fin. The results show that the thermal performance of the fin is favoured at low values of thermogeometric parameter and internal heat generation decreases the performance of the fin. The results can serve as verification of the solutions of other methods of analysis of the component.

Keywords

Main Subjects


[1] F. Khani, F. and A. Aziz.  Thermal analysis of a longitudinal trapezoidal fin with temperature dependent thermal conductivity and   heat transfer coefficient, Commun Nonlinear SciNumerSciSimult, 2010: 15(2010), 590–601.

[2]. L. P. Ndlovu and R. J. Moitsheki, R. J. Analytical Solutions for Steady Heat Transfer in Longitudinal Fins with Temperature-Dependent Properties, Mathematical Problems in Engineering, vol. 2013, pp. 14 pages.

[3]. A. Aziz  and S. M. Enamul-Huq.  Perturbation solution for convecting fin with temperature dependent thermal conductivity, J Heat Transfer, 97(1973), 300–301.

[4] A. Aziz,   A. Perturbation solution for convecting fin with internal heat generation and temperature dependent thermal conductivity, Int. J Heat Mass Transfer, 20(1977), 1253-5.

[5] A. Campo and R. J. Spaulding  “Coupling of the methods of successive approximations and undetermined coefficients for the prediction of the thermal behaviour of uniform circumferential fins,” Heat and Mass Transfer, 34(6) (1999), 461–468.

[6] C. Chiu and C. A. Chen .A decomposition method for solving the convectice longitudinal fins with variable thermal conductivity, International Journal of Heat and Mass Transfer 45(2002), 2067-2075.

[7]. A. A. Arslanturk, decomposition method for fin efficiency of convective straight fin with temperature dependent thermal conductivity,   IntCommun Heat Mass Transfer, 32(2005),  831–841.

[8] D. D. Ganji, The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer, Phys Lett A: 355(2006), 337–341.

[9] J. H. He.  Homotopy perturbation method, Comp Methods ApplMechEng, 178(1999), 257–262.

[10] M. S. H. Chowdhury and I. Hashim. Analytical solutions to heat transfer equations by homotopy-perturbation method revisited, Physical Letters A,  372(2008), 1240-1243.

[11] A. Rajabi, .Homotopy perturbation method for fin efficiency of convective straight fins with temperature dependent thermal conductivity .Physics Letters A , 364(2007), 33-37.

[12] I. Mustafa. Application of Homotopy analysis method for fin efficiency of convective straight fin with temperature dependent thermal conductivity. Mathematics and Computers Simulation, 79(2008), 189 – 200.

[13] S. B. Coskun. and M. T. Atay. Analysis of Convective Straight and Radial Fins with Temperature Dependent Thermal Conductivity Using Variational Iteration Method with Comparision with respect to finite Element Analysis. Mathematical problem in Engineering, 2007 ,Article ID 42072, 15 pages

[14] E. M. Languri., D. D. Ganji and N. Jamshidi. Variational Iteration and Homotopy perturbation methods for fin efficiency of convective straight fins with temperature dependent thermal conductivity. 5th WSEAS Int .Conf .On FLUID MECHANICS (fluids 08) Acapulco, Mexico January,  25 -27, 2008

[15] S. B. Coskun and M. T. Atay. Fin efficiency analysis of convective straight fin with temperature dependent thermal conductivity using variational iteration method, ApplThermEng, 28(2008), 2345–2352.

[16] M. T. Atay and S. B. Coskun. Comparative Analysis of Power-Law Fin-Type Problems Using Variational Iteration Method and Finite Element Method, Mathematical Problems in Engineering, 2008, 9 pages.

[17] G. Domairry and M. Fazeli. Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature dependent thermal conductivity. Communication in Nonlinear Science and Numerical Simulation 14(2009), 489-499.

 [18] M. S. H. Chowdhury, Hashim, I. and O. Abdulaziz. Comparison of homotopy analysis method and homotopy-permutation method for purely nonlinear fin-type problems, Communications in Nonlinear Science and Numerical Simulation ,14(2009), 371-378.

[19]. F. Khani, M. A. Raji and H. H. Nejad. Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient, Commun Nonlinear SciNumerSimulat, 2009:  14(2009) ,3327-3338.

[20] R. J. Moitheki, T. Hayat and M. Y. Malik. Some exact solutions of the fin problem with a power law temperature dependent thermal conductivity .Nonlinear Analysis  real world Application, 2010: 11, 3287 – 3294.

[21] K. Hosseini, B.  Daneshian, N.  Amanifard  and  R. Ansari. .Homotopy Analysis Method for a Fin with Temperature Dependent Internal Heat Generation and Thermal Conductivity.  International Journal of Nonlinear Science, 14(2012), 2, 201-210.

[22] A. A. Joneidi , D. D. Ganji,  Babaelahi, M.  Differential Transformation Method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity. International communication in Heat and Mass transfer, 36(2009), 757-762

[23] A. Moradi and H. Ahmadikia. Analytical Solution for different profiles of fin with temperature dependent thermal conductivity. Hindawi Publishing Corporation Mathematical Problem in Engineering volume 2010, Article ID 568263, 15.

[24] A. Moradi and H. Ahmadikia. Investigation of effect thermal conductivity on straight fin performance with DTM, International Journal of Engineering and Applied Sciences (IJEAS), 1(2011), 42 -54

[25]  S. Mosayebidorcheh, D. D.  Ganji, M. Farzinpoor. Approximate Solution of the nonlinear heat transfer equation of a fin with the power-law temperature-dependent thermal conductivity and heat transfer coefficient, Propulsion and Power Reasearch, 2014:  41-47.

[26] S. E. Ghasemi and M. Hatami and D. D. Ganji Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation, Cases Studies in Thermal Engineering., 4(2014), 1-8.

[27] D. D. Ganji and A. S. Dogonchi. Analytical investigation of convective heat transfer of a longitudinal fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation, 2014: vol. 9(21), 466-474.

[28] M. G. Sobamowo. M. G. Thermal analysis of longitudinal fin with temperature-dependent properties and internal heat generation using Galerkin’s method of weighted residual. Applied Thermal Engineering 99(2016), 1316–1330.

[29] A. Fernandez.  On some approximate methods for nonlinear models. Appl Math Comput., 215(2009):168-74.

[30]. A. Aziz and A. A. Bouaziz A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity, Energy Conversion and Management, 52(2011): 2876-2882.

[31] A.H. Khater, R.S. Temsah, M.M. Hassan, A Chebyshev spectral collocation methodfor solving Burgers'-type equations, Journal of Computational and Applied Mathematics222 (2008) 333–350.

  [32] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dynamics, Springer, New York, 1988.

 [33] E.H. Doha, A.H. Bhrawy, Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials, Appl.Numer. Math. 58 (2008) 1224–1244.

 [34] E.H. Doha, A.H. Bhrawy, Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations, Numer. Methods Partial Differential Equations 25 (2009) 712–739.

[35] E.H. Doha, A.H. Bhrawy, S.S. Ezzeldeen, Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations, Appl.Math. Model. (2011) doi:10.1016/j.apm.2011.05.011.