[1] V. Hassani, T. Tjahjowidodo, T. N. Do, A survey on hysteresis modeling, identification and control, Mechanical Systems and Signal Processing, Vol. 49, No. 1-2, pp. 209-233, 2014.
[2] M. Brokate, J. Sprekels, 2012, Hysteresis and Phase Transitions, Springer Science & Business Media,
[3] J. G. Boyd, D. C. Lagoudas, A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy, International Journal of Plasticity, Vol. 12, No. 6, pp. 805-842, 1996.
[4] M. Brocca, L. C. Brinson, Z. P. Bažant, Three-dimensional constitutive model for shape memory alloys based on microplane model, Journal of the Mechanics and Physics of Solids, Vol. 50, No. 5, pp. 1051-1077, 2002.
[5] D. C. Lagoudas, 2008, Shape Memory Alloys: Modeling and Engineering Applications, Springer,
[6] H. Prahlad, I. Chopra, Comparative Evaluation of Shape Memory Alloy Constitutive Models with Experimental Data, Journal of Intelligent Material Systems and Structures, Vol. 12, No. 6, pp. 383-395, 2016.
[7] H. Sayyaadi, M. R. Zakerzadeh, H. Salehi, A comparative analysis of some one-dimensional shape memory alloy constitutive models based on experimental tests, Scientia Iranica, Vol. 19, No. 2, pp. 249-257, 2012.
[8] S. Poorasadion, J. Arghavani, R. Naghdabadi, S. Sohrabpour, An improvement on the Brinson model for shape memory alloys with application to two-dimensional beam element, Journal of Intelligent Material Systems and Structures, Vol. 25, No. 15, pp. 1905-1920, 2013.
[9] S. M. Dutta, F. H. Ghorbel, Differential Hysteresis Modeling of a Shape Memory Alloy Wire Actuator, IEEE/ASME Transactions on Mechatronics, Vol. 10, No. 2, pp. 189-197, 2005.
[10] M. R. Zakerzadeh, H. Sayyaadi, M. A. V. Zanjani, Characterizing Hysteresis Nonlinearity Behavior of SMA Actuators by Krasnosel’skii-Pokrovskii Model, Journal Applied Mathematics, Vol. 1, No. 1, pp. 28-38, 2012.
[11] M. R. Zakerzadeh, M. Firouzi, H. Sayyaadi, S. B. Shouraki, Hysteresis Nonlinearity Identification Using New Preisach Model-Based Artificial Neural Network Approach, Journal of Applied Mathematics, Vol. 2011, pp. 1-22, 2011.
[12] H. Sayyaadi, M. R. Zakerzadeh, Position control of shape memory all
[15] M. Fuad Mohammad Naser, F. Ikhouane, Characterization of the Hysteresis oy actuator based on the generalized Prandtl–Ishlinskii inverse model, Mechatronics, Vol. 22, No. 7, pp. 945-957, 2012.
[13] S. Tafazoli, M. Leduc, X. Sun, Hysteresis Modeling using Fuzzy Subtractive Clustering COMPUTATIONAL COGNITION, Vol. 4, No. 3, pp. 15-27, 2006.
[14] A. Rezaeeian, B. Shasti, A. Doosthoseini, A. Yousefi-Koma, ANFIS Modeling and Feed Forward Control of Shape Memory Alloy Actuators, in Proceeding of, World Scientific and Engineering Academy and Society (WSEAS) Stevens Point, Wisconsin, USA: 243-248, 2008.Duhem Model, IFAC Proceedings Volumes, Vol. 46, No. 12, pp. 29-34, 2013/01/01/, 2013.
[16] B. Jayawardhana, R. Ouyang, V. Andrieu, Dissipativity of general Duhem hysteresis models, in IEEE Conference on Decision and Control and European Control Conference, 2011, pp. 3234-3239.
[17] M. F. Mohammad Naser, F. Ikhouane, Consistency of the Duhem Model with Hysteresis, Mathematical Problems in Engineering, Vol. 2013, pp. 1-16, 2013.
[18] A. Padthe, B. Drincic, O. Jinhyoung, D. Rizos, S. Fassois, D. Bernstein, Duhem modeling of friction-induced hysteresis, IEEE Control Systems Magazine, Vol. 28, No. 5, pp. 90-107, 2008.
[19] W.-f. Xie, J. Fu, H. Yao, C.-Y. Su, Observer based control of piezoelectric actuators with classical Duhem modeled hysteresis, in Proceeding of, IEEE, pp. 4221-4226.
[20] M. Zhou, J. Wang, Research on hysteresis of piezoceramic actuator based on the Duhem model, ScientificWorldJournal, Vol. 2013, pp. 814919, 2013.
[21] B. Jayawardhana, R. Ouyang, V. Andrieu, Stability of systems with the Duhem hysteresis operator: The dissipativity approach, Automatica, Vol. 48, No. 10, pp. 2657-2662, 2012.
[22] T. Aiki, T. Okazaki, One-dimensional Shape Memory Alloy Problem with Duhem Type of Hysteresis Operator, in: Free Boundary Problems, Eds., pp. 1-9: Springer Science mathplus Business Media, 2007.
[23] U. D. Annakkage, P. G. McLaren, E. Dirks, R. P. Jayasinghe, A. D. Parker, A current transformer model based on the Jiles-Atherton theory of ferromagnetic hysteresis, IEEE Transactions on Power Delivery, Vol. 15, No. 1, pp. 57-61, 2000.
[24] N. C. Pop, O. F. Călţun, Using the Jiles Atherton model to analyze the magnetic properties of magnetoelectric materials: (BaTiO3) x (CoFe2O4)1−x, Indian Journal of Physics, Vol. 86, No. 4, pp. 283-289, 2012.
[25] P. R. Wilson, J. N. Ross, A. D. Brown, Optimizing the Jiles-Atherton model of hysteresis by a genetic algorithm, IEEE Transactions on Magnetics, Vol. 37, No. 2, pp. 989-993, 2001.
[26] R. Marion, R. Scorretti, N. Siauve, M. A. Raulet, L. Krahenbiihl, Identification of Jiles–Atherton Model Parameters Using Particle Swarm Optimization, IEEE Transactions on Magnetics, Vol. 44, No. 6, pp. 894-897, 2008.
[27] M. Toman, G. Stumberger, D. Dolinar, Parameter Identification of the Jiles–Atherton Hysteresis Model Using Differential Evolution, IEEE Transactions on Magnetics, Vol. 44, No. 6, pp. 1098-1101, 2008.
[28] M. Ismail, F. Ikhouane, J. Rodellar, The Hysteresis Bouc-Wen Model, a Survey, Archives of Computational Methods in Engineering, Vol. 16, No. 2, pp. 161-188, 2009.
[29] F. Ikhouane, J. Rodellar, 2007, Systems with Hysteresis: Analysis, Identification and Control Using the Bouc-Wen Model, Wiley-Interscience,
[30] G. A. Ortiz, D. A. Alvarez, D. Bedoya-Ruíz, Identification of Bouc–Wen type models using multi-objective optimization algorithms, Computers & Structures, Vol. 114-115, pp. 121-132, 2013.
[31] F. Ikhouane, V. Mañosa, J. Rodellar, Dynamic properties of the hysteretic Bouc-Wen model, Systems & Control Letters, Vol. 56, No. 3, pp. 197-205, 2007.
[32] H.-g. Li, G. Meng, Nonlinear dynamics of a SDOF oscillator with Bouc–Wen hysteresis, Chaos, Solitons & Fractals, Vol. 34, No. 2, pp. 337-343, 2007.
[33] J. Awrejcewicz, L. Dzyubak, C.-H. Lamarque, Modelling of hysteresis using Masing–Bouc-Wen’s framework and search of conditions for the chaotic responses, Communications in Nonlinear Science and Numerical Simulation, Vol. 13, No. 5, pp. 939-958, 2008.
[34] Z.-l. Peng, C.-g. Zhou, Research on modeling of nonlinear vibration isolation system based on Bouc–Wen model, Defence Technology, Vol. 10, No. 4, pp. 371-374, 2014.
[35] X. Zhu, X. Lu, Parametric Identification of Bouc-Wen Model and Its Application in Mild Steel Damper Modeling, Procedia Engineering, Vol. 14, pp. 318-324, 2011.
[36] W. Zhu, D.-h. Wang, Non-symmetrical Bouc–Wen model for piezoelectric ceramic actuators, Sensors and Actuators A: Physical, Vol. 181, pp. 51-60, 2012.
[37] Z. Wei, B. L. Xiang, R. X. Ting, Online parameter identification of the asymmetrical Bouc–Wen model for piezoelectric actuators, Precision Engineering, Vol. 38, No. 4, pp. 921-927, 2014.
[38] P. Sengupta, B. Li, Modified Bouc–Wen model for hysteresis behavior of RC beam–column joints with limited transverse reinforcement, Engineering Structures, Vol. 46, pp. 392-406, 2013.
[39] A. E. Charalampakis, V. K. Koumousis, Identification of Bouc–Wen hysteretic systems by a hybrid evolutionary algorithm, Journal of Sound and Vibration, Vol. 314, No. 3-5, pp. 571-585, 2008.
[40] K. Ogata, in: Modern Control Engineering (5th Edition), Eds., pp. 164-179: Pearson, 2009.