[1] M. A. Eltaher, F. F. Mahmoud, A. E. Assie, E. I. Meletis, Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams, Applied Mathematics and Computation, Vol. 224, pp. 760-774, 11/1/, 2013.
[2] M. A. Eltaher, M. A. Agwa, F. F. Mahmoud, Nanobeam sensor for measuring a zeptogram mass, International Journal of Mechanics and Materials in Design, Vol. 12, No. 2, pp. 211-221, 2016.
[3] M. Z. Nejad, A. Hadi, A. Rastgoo, Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory, International Journal of Engineering Science, Vol. 103, pp. 1-10, 2016.
[4] M. Z. Nejad, A. Hadi, Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams, International Journal of Engineering Science, Vol. 105, pp. 1-11, 2016.
[5] M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, Journal of Solid Mechanics, Vol. 7, No. 3, pp. 299-311, 2015.
[6] M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[7] M. Aydogdu, Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity, Mechanics Research Communications, Vol. 43, pp. 34-40, 2012.
[8] H. Moosavi, M. Mohammadi, A. Farajpour, S. Shahidi, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 135-140, 2011.
[9] A. Farajpour, A. Shahidi, M. Mohammadi, M. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, Vol. 94, No. 5, pp. 1605-1615, 2012.
[10] M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, No. 3, pp. 437-458, 2014.
[11] M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[12] M. Mohammadimehr, B. R. Navi, A. G. Arani, Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of double-coupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT, Composites Part B: Engineering, Vol. 87, pp. 132-148, 2016.
[13] M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014.
[14] M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, No. 4, pp. 659-682, 2014.
[15] A. Daneshmehr, A. Rajabpoor, A. Hadi, Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories, International Journal of Engineering Science, Vol. 95, pp. 23-35, 2015.
[16] A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, Vol. 54, No. 9, pp. 4703-4710, 1983.
[17] R. Nazemnezhad, S. Hosseini-Hashemi, Free vibration analysis of multi-layer graphene nanoribbons incorporating interlayer shear effect via molecular dynamics simulations and nonlocal elasticity, Physics Letters A, Vol. 378, No. 44, pp. 3225-3232, 2014.
[18] H. G. Craighead, Nanoelectromechanical systems, Science, Vol. 290, No. 5496, pp. 1532-6, Nov 24, 2000. eng
[19] R. Ansari, B. Arash, H. Rouhi, Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity, Composite Structures, Vol. 93, No. 9, pp. 2419-2429, 2011.
[20] J. N. Reddy, Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates, International Journal of Engineering Science, Vol. 48, No. 11, pp. 1507-1518, 11//, 2010.
[21] A. Assadi, B. Farshi, Size dependent stability analysis of circular ultrathin films in elastic medium with consideration of surface energies, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 5, pp. 1111-1117, 3//, 2011.
[22] A. C. Eringen, 2002, Nonlocal Continuum Field Theories, Springer New York,
[23] M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature effect on vibration analysis of annular graphene sheet embedded on visco-Pasternak foundation, Journal of Solid Mechanics, Vol. 5, No. 3, pp. 305-323, 2013.
[24] M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, Journal of Solid Mechanics, Vol. 4, No. 2, pp. 128-143, 2012.
[25] M. Mohammadi, A. Farajpour, M. Goodarzi, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science, Vol. 82, pp. 510-520, 2014.
[26] Ö. Civalek, Ç. Demir, Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory, Applied Mathematical Modelling, Vol. 35, No. 5, pp. 2053-2067, 5//, 2011.
[27] S. R. Asemi, A. Farajpour, Vibration characteristics of double-piezoelectric-nanoplate-systems, Micro & Nano Letters, IET, Vol. 9, No. 4, pp. 280-285, 2014.
[28] R. Shimpi, H. Patel, A two variable refined plate theory for orthotropic plate analysis, International Journal of Solids and Structures, Vol. 43, No. 22, pp. 6783-6799, 2006.
[29] B. Akgöz, Ö. Civalek, Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory, Composite Structures, Vol. 98, pp. 314-322, 2013.
[30] S. Srinivas, A. Rao, Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates, International Journal of Solids and Structures, Vol. 6, No. 11, pp. 1463-1481, 1970.
[31] J. Reddy, A refined nonlinear theory of plates with transverse shear deformation, International Journal of solids and structures, Vol. 20, No. 9-10, pp. 881-896, 1984.
[32] R. Aghababaei, J. Reddy, Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates, Journal of Sound and Vibration, Vol. 326, No. 1, pp. 277-289, 2009.