[1] Kaufmann, E., Fisher, J., Di. Julio, R., Gross, J., 1997, “Failure analysis of welded steel moment frames damaged in the Northridge earthquake”. Gaithersburg, Md: NISTIR, 5944.
[2] Kanvinde, A. M., 2004, “Micromechanical simulation of earthquake-induced fracture in steel structures”, Ph.D. Thesis, Stanford University.
[3] Iyama, J., Ricles, J. M., 2009, “Prediction of fatigue life of welded beam-to-column connections under earthquake loading”. Journal of structural engineering, 135(12), pp. 1472-1480.
[4] Rice, J. R., Tracey, D. M., 1969, “On the ductile enlargement of voids in triaxial stress fields”. Journal of the Mechanics and Physics of Solids, 17(3), pp. 201-217.
[5] Kanvinde, A., Deierlein, G., 2007 “Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue”. Journal of engineering mechanics, 133(6), pp. 701-712.
[6] Fell, B. V., 2008, “Large-scale testing and simulation of earthquake-induced ultra low cycle fatigue in bracing members subjected to cyclic inelastic buckling”. University of California.
[7] Ajaei,B., Ghassemieh, M., 2015, “Reinforcing fillet welds preventing cracks in partial joint penetration welds”. International Journal of Steel Structures, 15(2), pp. 487-497.
[8] Ajaei, B., Ghassemieh, M., 2013, “Applicability of damage indices for detection of cracking in steel moment connections”. Journal of Rehabilitation in Civil Engineering, 1(2), pp. 1-9.
[9] Lim, C., Choi, W., Sumner, E. A., 2012, “Low cycle fatigue life prediction using a four-bolt extended unstiffened end plate moment connection”. Engineering Structures, 41, pp. 373-384.
[10] Amiri, H., Aghakouchak, A., Shahbeyk, S., Engelhardt, M., 2013, “Finite element simulation of ultra low cycle fatigue cracking in steel structures”. Journal of Constructional Steel Research, 89, pp. 175-184.
[11] Zhou, H., Wang, Y., Yang, L., Shi, Y., 2014, “Seismic low-cycle fatigue evaluation of welded beam-to-column connections in steel moment frames through global–local analysis”. International Journal of Fatigue, 64, pp. 97-113.
[12] Bai, Y., Kurata, M., Flórez-López, J. and Nakashima, M., 2016. “Macro-modeling of Crack Damage in Steel Beams Subjected to Nonstationary Low Cycle Fatigue”. Journal of Structural Engineering, 142(10), p.04016076.
[13] Liu, Y., Jia, L.J., Ge, H., Kato, T. and Ikai, T., 2017. “Ductile-fatigue transition fracture mode of welded T-joints under quasi-static cyclic large plastic strain loading”. Engineering Fracture Mechanics, 176, pp.38-60.
[14] Pereira, J., de Jesus, A., Xavier, J., Fernandes, A., 2014, “Ultra low-cycle fatigue behavior of a structural steel”. Engineering Structures, 60, pp. 214-222.
[15] Ermelj, B., Moe, P., Sinur, F., 2016, “On the prediction of low-cycle fatigue in steel welded beam-to-column joints”. Journal of Constructional Steel Research, 117, pp. 49-63.
[16] Liao, F., Wang, W., Chen, Y., 2015, “Ductile fracture prediction for welded steel connections under monotonic loading based on micromechanical fracture criteria”. Engineering Structures, 94, pp. 16-28.
[17] Tong, L., Huang, X., Zhou, F., Chen, Y., 2016, “Experimental and numerical investigations on extremely-low-cycle fatigue fracture behavior of steel welded joints”. Journal of Constructional Steel Research, 119, pp. 98-112.
[18] Lemaitre, J.,Chaboche, L., 1990, “Mechanics of Solid Materials”, Cambridge University Press.
[19] Nia, Z. S., Mazroi, A., Ghassemieh, M., 2014, “Cyclic performance of flange-plate connection to box column with finger shaped plate”. Journal of Constructional Steel Research, 101, pp. 207-223.
[20] AISC., 2005, AISC 341-05. “Seismic provisions for structural steel buildings”. Chicago (IL): American Institute of Steel Construction.
[21] Correa, S. R., de Campos, M. F., Marcelo, C., de Castro, J. A., Fonseca, M. C., Chuvas, T., Padovese, L. R., 2016, “Evaluation of Residual Stresses in Welded ASTM A36 Structural Steel by Metal Active Gas (MAG) Welding Process”. Paper presented at the Materials Science Forum.2.3023