[1] J. Salisbury, “Active stiffness control of a manipulator in cartesian coordinates,” in Proc. IEEE Conf. on Decision and Control (CDC), 1980, vol. 19, pp. 95–100.
[2] F. L. Lewis, D. M. Dawson, and C. T. Abdallah, Robot Manipulator Control: Theory and Practice. Taylor & Francis, 2003.
[3] M. H. Raibert and J. J. Craig, “Hybrid Position/Force Control of Manipulators,” J. Dyn. Syst. Meas. Control, vol. 103, no. 2, p. 126, 1981.
[4] T. Yoshikawa, “Dynamic hybrid position/force control of robot manipulators--Description of hand constraints and calculation of joint driving force,” IEEE Journal on Robotics and Automation, vol. 3, no. 5. pp. 386–392, 1987.
[5] Q. Huang and R. Enomoto, “Hybrid position, posture, force and moment control of robot manipulators,” 2008 IEEE Int. Conf. Robot. Biomimetics, ROBIO 2008, no. 1, pp. 1444–1450, 2008.
[6] A. C. Leite, F. Lizarralde, and Liu Hsu, “A cascaded-based hybrid position-force control for robot manipulators with nonnegligible dynamics,” Proc. 2010 Am. Control Conf., pp. 5260–5265, 2010.
[7] M. H. Raibert, Legged Robots that Balance. MIT Press, 1986.
[8] M. Mistry, J. Buchli, and S. Schaal, “Inverse dynamics control of floating base systems using orthogonal decomposition,” 2010 IEEE Int. Conf. Robot. Autom., no. 3, pp. 3406–3412, 2010.
[9] L. Righetti, J. Buchli, M. Mistry, M. Kalakrishnan, and S. Schaal, “Optimal distribution of contact forces with inverse-dynamics control,” Int. J. Rob. Res., vol. 32, no. 3, pp. 280–298, 2013.
[10] L. Righetti, M. Mistry, j. Buchli, and S. Schaal, “Inverse Dynamics Control of Floating-Base Robots With External Contraints: an Unified View,” 2011 Ieee Int. Conf. Robot. Autom., pp. 1085–1090, 2011.
[11] Z. Li, S. S. Ge, and S. Liu, “Contact-force distribution optimization and control for quadruped robots using both gradient and adaptive neural networks,” IEEE Trans. Neural Networks Learn. Syst., vol. 25, no. 8, pp. 1460–1473, 2014.
[12] F. T. Cheng and D. E. Orin, “Optimal Force Distribution in Multiple-Chain Robotic Systems,” IEEE Trans. Syst. Man Cybern., vol. 21, no. 1, pp. 13–24, 1991.
[13] H. Takemura, M. Deguchi, J. Ueda, Y. Matsumoto, and T. Ogasawara, “Slip-adaptive walk of quadruped robot,” Rob. Auton. Syst., vol. 53, no. 2, pp. 124–141, 2005.
[14] B. U. Rehman, M. Focchi, J. Lee, H. Dallali, D. G. Caldwell, and C. Semini, “Towards a multi-legged mobile manipulator,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2016–June, pp. 3618–3624, 2016.
[15] L. Righetti, M. Kalakrishnan, P. Pastor, J. Binney, J. Kelly, R. C. Voorhies, G. S. Sukhatme, and S. Schaal, “An autonomous manipulation system based on force control and optimization,” Auton. Robots, vol. 36, no. 1–2, pp. 11–30, 2014.
[16] H. Hemami and F. C. Weimer, “Modeling of Nonholonomic Dynamic Systems With Applications,” J. Appl. Mech., vol. 48, no. 1, pp. 177–182, Mar. 1981.
[17] R. P. Singh, “Singular Value Decomposition for Constrained Dynamical Systems,” J. Appl. Mech., vol. 52, no. 4, p. 943, 1985.
[18] S. S. Kim and M. J. Vanderploeg, “QR Decomposition for State Space Representation of Constrained Mechanical Dynamic Systems,” J. Mech. Transm. Autom. Des., vol. 108, no. 2, pp. 183–188, Jun. 1986.
[19] P. V Nagy, S. Desa, and W. L. Whittaker, “Energy-based stability measures for reliable locomotion of statically stable walkers: Theory and application,” Int. J. Rob. Res., vol. 13, no. 3, pp. 272–287, 1994.
[20] S. Hirose, H. Tsukagoshi, and K. Yoneda, “Normalized energy stability margin and its contour of walking vehicles on rough terrain,” in Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 2001, vol. 1, pp. 181–186.
[21] S. Zhang, J. Gao, X. Duan, H. Li, Z. Yu, X. Chen, J. Li, H. Liu, X. Li, Y. Liu, and Z. Xu, “Trot pattern generation for quadruped robot based on the ZMP stability margin,” 2013 ICME Int. Conf. Complex Med. Eng. C. 2013, pp. 608–613, 2013.
[22] B.-S. Lin and S.-M. Song, “Dynamic modeling, stability and energy efficiency of a quadruped walking machine,” IEEE Int. Conf. Robot. Autom., pp. 367–373, 1993.
[23] K. Yoneda and S. Hirose, “Tumble stability criterion of integrated locomotion and manipulation,” in Intelligent Robots and Systems ’96, IROS 96, Proceedings of the 1996 IEEE/RSJ International Conference on, 1996, vol. 2, pp. 870–876 vol.2.
[24] E. Garcia and P. G. de Santos, “An improved energy stability margin for walking machines subject to dynamic effects,” Robotica, vol. 23, no. 1, pp. 13–20, 2005.
[25] D. Zhou, K. H. Low, and T. Zielinska, “A stability analysis of walking robots based on leg-end supporting moments,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 2000, vol. 3, pp. 2834–2839 vol.3.
[26] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential field techniques for robot path planning,” IEEE Trans. Syst. Man. Cybern., vol. 22, no. 2, pp. 224–241, 1992.
[27] O. Montiel, U. Orozco-Rosas, and R. Sepúlveda, “Path planning for mobile robots using Bacterial Potential Field for avoiding static and dynamic obstacles,” Expert Syst. Appl., vol. 42, no. 12, pp. 5177–5191, 2015.
[28] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel, “Finding Locally Optimal, Collision-Free Trajectories with Sequential Convex Optimization.,” in Robotics: science and systems, 2013, vol. 9, no. 1, pp. 1–10.