[1] Bailey T, Hubbard JE, Distributed piezoelectricpolymer active vibration control of a cantilever beam, J Guidance and Control 8 (1985) 605–611.
[2] Anderson EH, Hagood NW, Simultaneous piezoelectric sensing/actuation: analysis and application to controlled structures .J Sound Vib 174 (1994) 617–639.
[3] Zou HS, Piezoelectric Shells Distributed Sensing and Control of Continua, Dordrecht: Kluwer Academic Publishers (1993).
[4] Gaudenzi P, Carbonaro R, Benzi E, Control of beam vibrations by means of piezoelectric devices: theory and experiments .J Composite Structure 50 (2000) 373–379.
[5] Lam KY, Ng TY, Active control of composite plates with integrated piezoelectric sensors and actuators under various dynamic loading conditions. Smart Mater Struct 8 (1999) 223–237.
[6] Chandrashekhara K, Agarwal AN, Active vibration control of laminated composite plates using piezoelectric devices: a finite element approach. J Intel Mater System Struct 4 (1993) 496–508.
[7] Birman V, Adali S, Vibration damping using piezoelectric stiffener-actuators with application to orthotropic plates. Compos Struct 35 (1996) 251–261.
[8] J. C. Doyle, A. Let, State-space solutions to standard H2 and H∞ control problems, IEEE Trans. Auto. Cont. ,Vol., 34, No. 8, pp.331-847, (1989).
[9] J. C. Doyle, Al. Et, Survey of quantitative feedback theory (QFT), Inter. Jour. of Rob. and Non. Cont., Vol.11, Issue 10, pp.887-921, (2001).
[10] H. Houpis, S.J. Rasmussen, M.G. Sanz, Quantitative feedback theory: Fundamentals and applications, Published by CRC Press, (2006).
[11] Horowits I, Azor R, quantitative synthesis of feedback system with distributed uncertain plant, International Journal of control, 38 (2): 381-400, (1983).
[12] Horowitz I, Azor R, Uncertain partially noncausal distributed feedback systems, International Journal of Control, 40(5):989–1002, (1984).
[13] I. Horowitz, Quantitative feedback design theory, QFT Publication, 4470 Grinnell, Boulder, (1993).
[14] C. Chain, B. Wang, I. Horowitz, An alternative method for the design of MIMO system with large plant uncertainty, Control Theory and Adv. Tech., Vol.9, pp.955-969, (1993).
[15] C. Cheng, Y. Liao, T. Wang, Quantitative feedback design of uncertain multivariable control systems, Int. J. Con.,Vol.65, pp.237-553, (1996).
[16] C. Cheng, Y. Liao, T. Wang, Quantitative design of uncertain multivariable control system with an inner feedback loop, IEE Proc. Cont. The. and Appl., Vol.144, pp.195-201, (1997).
[17] M. Franchek, S. Jayasuria, Controller design for performance guarantees in uncertain reglating systems, Int. J. Cont., Vol. 61, No.1, pp.127-148, (1995).
[18] Longxiang Chen, Ji Pan, Active control of flexible cantilever plate with multiple time delays, Acta Mechanica Solida Sinica, Vol. 21, No. 3, June, (2008)
[19] K.T. Chen, S.H. Chang, C.H. Chou, Y.H. Liu, Active control by using optical sensors on the acoustic radiation from square plates, Applied Acoustics 69 (2008) 367–377.
[20] A. KACAR, O. KAYA, VIBRATION CONTROL OF LAMINATED PLATE BY SMART PATCHES, International Conference on Integrity, Reliability and Failure, Porto/Portugal, 20-24 July (2009).
[21] Giovanni Caruso, Sergio Galeani, Active vibration control of an elastic plate using multiple piezoelectric sensors and actuators, Simulation Modeling Practice and Theory 11 (2003) 403–419.
[22] TianXiong Liu, HongXing Hua, Robust control of plate vibration via active constrained layer damping, Thin-Walled Structures 42 (2004) 427–448.
[23] M. Kozupa and J. Wiciak, Active Vibration Control of Rectangular Plate with Distributed Piezoelements Excited Acoustically and Mechanically, Acoustic and Biomedical Engineering, Vol. 118 (2010).
[24] Leissa AW. The free vibration of rectangular plates. Journal of Sound and Vibration 31 (1973) 257– 93.
[25] E. Ventsel, T. Krauthammer. Thin Plates and Shells Theory, Analysis, and Applications ISBN: 0- 8247 0575-0, (2011) 13-150.
[26] Reddy, J. N, Theory and Analysis of Elastic Plates, Taylor and Francis, Philadelphia (1999).
[27] Reddy, J. N, A general higher-order theory of plates with moderate thickness, Int. J. Non-Linear Mech, 25(6) (1990), 667-686.
[28] Garcia-Sanz M, Huarte A, Asenjo A. A quantitative robust control approach for distributed parameter systems, Int. J. Robust Nonlinear Control 17 (2007) 135–153.
[29] Garcia-Sanz M, Huarte A, Asenjo A. One-point feedback robust control for distributed parameter systems. Proceedings of 16th IFAC World Congress on Automatic Control, Prague, Czech Republic, (2005).
[30] Garcia-Sanz M, Huarte A, Asenjo A. QFT approach to control one-point feedback distributed parameter systems. Proceedings of 7th International Symposium on Quantitative Feedback Theory and Robust Frequency Methods, Lawrence, KS, U.S.A., (2005).
[31] Kelemen M, Kannai Y, Horowitz I. Improved method for designing linear distributed feedback systems. International Journal of Adaptive Control and Signal Processing 4 (1990) 249–257.
[32] Kelemen M, Kannai Y, Horowitz I. One-point feedback approach to distributed linear systems. International Journal of Control, 49(3) (1989) 969–980.
[33] Chait Y, Maccluer CR, Radcliffe CJ. A Nyquist stability criterion for distributed parameter systems. IEEE Transactions on Automatic Control 34(1) (1989) 90–92.
[34] Hedge MD, Nataraj PSV. The two-point feedback approach to linear distributed systems. Proceedings of the International Conference on Automation, Indore, India, (1995) 281–284.
[35] L. LENIOWSKA, Vibrations of circular plate interacting with an ideal compressible fluid, Archives of Acoustics, 24, 4, 435–449 (1999).
[36] I. MALECKI, Theory of waves and acoustic systems [in Polish], PWN, Warszawa (1964).
[37] L. MEIROVITCH, A theory for the optimal control of the far-field acoustic pressure radiating from submerged structures, Journal of the Acoustical Society of America, 93, 356–362 (1993).
[38] W. RDZANEK, Acoustic radiation of circular plate including the attenuation effect and influence of surroundings, Archives of Acoustics, 16, 3–4, 581– 590 (1991).
[39] L. LENIOWSKA, LENIOWSKI R., Active vibration control of a circular plate with clamped boundary condition, Molecular and Quantum Acoustics, 22, 145–156 (2001).
[40] L. LENIOWSKA, R. LENIOWSKI, Active attenuation of sound radiation from circular fluidloaded plate, Journal of Acoustic and Vibration, 6, 1, 35–41 (2001).
[41] L. LENIOWSKA, Active vibration control of the circular plate with simply-supported boundary condition, Molecular and Quantum Acoustics, 24, 109–124 (2003).