Composite Adhesive-Bonded Joint Reinforcement by Incorporation of Nano-Alumina Particles

Document Type : Research Paper


1 university of tehran

2 School of Mechanical Engineering, College of Engineering, University of Tehran


Adhesive bonding technology is being used in a variety of modern industries, including the automotive, aerospace, maritime, construction, defense and so on. On the other side, polymeric nano - composites attracted both academic and industrial interests in the past decades. The scope of this paper is experimental investigation on the effects of the addition of Alpha-alumina nanoparticles to the woven glass / epoxy composite and Araldite 2015 adhesive on the mechanical properties of the composite adhesive bonded joints. In this study, vacuum assisted resin transfer molding was used to fabricate experimental samples and to fabricate composite samples, 6 glass-fiber layers with a surface density of 200 g/m2 were used. The study of the influences of the addition of Alpha-alumina nanoparticles with different weight ratios to glass/epoxy composites suggests that the maximum values of the ultimate strength, elongation, toughness, and Young’s modulus belong to the samples with the weight ratios of 0.43, 1, 1, and 2.1%, respectively. The experimental results from the shear tensile test show that the incorporation of 0.74 wt% of nanoparticles to the adhesive increases the joint strength by about 14%.


Main Subjects

[1] Bodaghi, H., 2012, experimental investigation of CNT effect on composite adhesive joint strength, Msc thesis, mechanical school, Shahid Rajaei university.
[2] Gojny, F.H.; Wichmann, M.H.G.; Fiedler, B. & Schulte, K., 2005, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study. Composites Science and Technology, 65(15-16): 2300-2313.
[3] Gilbert, E.N.; Hayes, B.S. & Seferis, J.C.,2003, Nano-alumina modified epoxy based film adhesives. Polymer Engineering and Science, 43(5): 1096-1104.
[4] Meguid, S.A. & Sun, Y., 2004, On the tensile and shear strength of nano-reinforced composite interfaces. Materials and Design, 25(4): 289-296.
[5] Zhai, L.; Ling, G.; Li, J. & Wang, Y. 2006, The effect of nanoparticles on the adhesion of epoxy adhesive. Materials Letters, 60(25-26): 3031-3033.
[6] Zhai, L.; Ling, G. & Wang, Y. 2008. Effect of nano-Al2O3 on adhesion strength of epoxy adhesive and steel. International Journal of Adhesion and Adhesives, 28(1-2): 23-28.
[7] Yu S, Tong MN, Critchlow G., 2009, Wedge test of carbon nanotube reinforced epoxy adhesive joints. Journal of Appled Polymer Science, 111: 2957–2962.
[8] Xi X, Yu C, Lin W., 2009, Investigation of nanographite/polyurethane electroconductive adhesives: preparation and characterization. Journal od Adhesion Science Technology, 23: 1939–1951.
[9] Tessema, A., Joseph Moll, D., Xuc, S., Yang, R., Lia, C., Kumar, S.K., Kidane, A., 2017, Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites, Polymer Testing, 57: 101–106.
[10] Kaboorani, A., Auclair, N., Riedl, B., Landry, V., 2017, Mechanical properties of UV-cured cellulose nanocrystal (CNC) nanocomposite coating for wood furniture, Progress in Organic Coatings, 104: 91-96.
[11] Bian, J., Wang, Z.J., Lin, H.L., Zhou, X., Xiao, W.Q., Zhao, X.W., 2017, Thermal and mechanical properties of polypropylene nanocomposites reinforced with nano-SiO2 functionalized graphene oxide, Composites Part A: Applied Science and Manufacturing, Available online 4 January 2017.
[12] Klug, J.H. & Seferis, J.C. 1999, Phase separation influence on the performance of CTBN toughened epoxy adhesives. Polymer Engineering and Science, 39(10): 1837-1848.
[13] Kinloch, A.J.; Lee, J.H.; Taylor, A.C.; Sprenger, S.; Eger, C. & Egan, D. 2003, Toughening structural adhesives via nano- and micro-phase inclusions. The Journal of Adhesion, 79(8-9): 867-873.
[14] Bhowmik, S.; Benedictus, R.; Poulis, J.A.; Bonin, H.W. & Bui, V.T. 2009, High-performance nanoadhesive bonding of titanium for aerospace and space applications. International Journal of Adhesion and Adhesives, 29(3): 259-267.
[15] Dodiuk, H.; Kenig, S.; Blinsky, I.; Dotan, A. & Buchman, A. 2005. Nanotailoring of epoxy adhesives by polyhedral-oligomeric-sil-sesquioxanes (POSS). International Journal of Adhesion and Adhesives, 25(3): 211-218.
[16] Hsiao, K.-T.; Alms, J. & Advani, S.G. 2003. Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites.
Nanotechnology, 14(7): 791-793.
[17] Xu, L.R.; Li, L; Lukehart, C.M. & Kuai, H.C. 2007. Mechanical characterization of nanofiberreinforced composite adhesives. Journal of Nanoscience and Nanotechnology, 7: 2546-2548.
[18] Prolongo, S.G.; Campo, M.; Gude, M.R.; Chaos- Morn, R. & Urea, A. 2009. Thermophysical characterisation of epoxy resin reinforced by aminofunctionalized carbon nanofibers. Composites Science and Technology, 69: 349-357.
[19] Ghabezi, P., Golzar, M., 2012, Investigation and Modeling of Compaction Behavior of Plain Fabrics, Applied Mechanics and Materials, (110-116): 611-615.
[20] Yasmin, A., Abot, J. L., Daniel, I. M., 2003, Processing of clay/epoxy nanocomposites by shear mixing, Scripta Materialia, 49: 81-86.
Volume 47, Issue 2
December 2016
Pages 231-239
  • Receive Date: 24 October 2016
  • Revise Date: 18 November 2017
  • Accept Date: 10 December 2017