Water thickness effect on the fin efficiency and heat transfer for partially wet-surface heat exchanger

Document Type: Research Paper

Authors

School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

Heat and mass transfer, in this paper, is considered in one-row heat exchanger, that fins are hotter than air flow and water is added to fins. Related governing equations are derived by analyzing a two-dimension model in a unique cell of a heat exchange. These equations are numerically solved by finite difference method. Heat transfer and efficiency under partially wet surface are calculated by changes in thickness of water layer on the fins and wet percentage region of fin with constant airflow characteristics. In this study, Lewis Number as unity and water vapor saturation as parabolic are assumed. Obtained results show that increasing in thickness of fin leads to increasing thermal resistance; therefore, efficiency of fin decreases. But thickness of water layer dose not play a significant role in fin efficiency when water layer covering the surface of fins is thin or it covers a small region of fins because thermal resistance of water is not comparable with thermal conductivity of fin material. But where thickness of water layer is comparable with fin pitch or more surface of fins is wetted, fin efficiency and heat transfer change obviously because of increasing thermal resistance and changing in air flow velocity that cause more decreasing in efficiency of fins.

Keywords

Main Subjects


1.Wen-Jei, Y., & Clark, D. W. (1975). Spray cooling of air-cooled compact heat exchangers. International Journal of Heat and mass transfer, 18(2), 311-317
2. Naphon, P. (2006). Study on the heat transfer characteristics of the annular fin under dry-surface, partially wet-surface, and fully wet-surface conditions. International communications in heat and mass transfer, 33(1), 112-121
3. Kazeminejad, H. (1995). Analysis of onedimensional fin assembly heat transfer with dehumidification. International journal of heat and mass transfer, 38(3), 455-462
4. Pirompugd, W., Wang, C. C., & Wongwises, S. (2007). Finite circular fin method for heat and mass transfer characteristics for plain fin-and-tube heat exchangers under fully and partially wet surface conditions. International journal of heat and mass transfer, 50(3), 552-565
5. Salah El-Din, M. M. (1998). Performance analysis of partially-wet fin assembly. Applied thermal engineering, 18(5), 337-349
6. Maclaine-Cross, I. L., & Banks, P. J. (1981). A general theory of wet surface heat exchangers and its application to regenerative evaporative cooling. Journal of heat transfer, 103, 579
7. Kettleborough, C. F., & Hsieh, C. S. (1981). Thermal performance of the wet surface plastic plate heat exchanger used as an indirect evaporative cooler. Am. Soc. Mech. Eng.(Pap.); (United States), 81
8. Hsu, S. T., Lavan, Z., & Worek, W. M. (1989). Optimization of wet-surface heat exchangers. Energy, 14(11), 757-770
9. Chen, P. L., Qin, H. M., Huang, Y. J., & Wu, H. F. (1991). A heat and mass transfer model for thermal and hydraulic calculations of indirect evaporative cooler performance. ASHRAE Transactions, 97(2), 852-865
10. Stoitchkov, N. J., & Dimitrov, G. I. (1998). Effectiveness of crossflow plate heat exchanger for indirect evaporative cooling: International journal of refrigeration, 21(6), 463-471
11. Tsay, Y. L. (1994). Analysis of heat and mass transfer in a countercurrent-flow wet surface heat exchanger. International journal of heat and fluid flow, 15(2), 149-156
12. Yan, W. M. (1995). Effects of film vaporization on turbulent mixed convection heat and mass transfer in a vertical channel. International journal of heat and mass transfer, 38(4), 713-722.
13. Yan, W. M. (1998). Evaporative cooling of liquid film in turbulent mixed convection channel flows. International journal of heat and mass transfer, 41(23), 3719-3729
14. Hu, H., Lai, Z., Weng, X., Ding, G., & Zhuang, D. (2017). Numerical model of dehumidifying process of wet air flow in open-cell metal foam. Applied Thermal Engineering, 113, 309-321
15. Hatami, M., & Ganji, D. D. (2014). Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis. International Journal of Refrigeration, 40,
140-151.
16. Hu, H., Weng, X., Zhuang, D., Ding, G., Lai, Z., & Xu, X. (2016). Heat transfer and pressure drop characteristics of wet air flow in metal foam under dehumidifying conditions. Applied Thermal Engineering, 93, 1124-1134. Vol. 47, No. 2, December 2016 
17. Handbook—Fundamentals, A. S. H. R. A. E. (1993). American society of heating, refrigerating and air conditioning engineers. Inc., New York
18. McQuiston, F. C. (1978). Correlation of heat, mass and momentum transport coefficients for platefin-tube heat transfer surfaces with staggered tubes. ASHRAE Trans, 84(1), 294-309
19. McQuiston, F. C., Parker, J. D., & Spitler, J. D. (2010). Heating, ventilating, and air conditioning: analysis and design (Vol. 6). Wiley
20. Coney, J. E. R., Sheppard, C. G. W., & El- Shafei, E. A. M. (1989). Fin performance with condensation from humid air: a numerical investigation. International Journal of Heat and Fluid Flow, 10(3), 224-231
21. Rosman, E. C., Carajilescov, P., & Saboya, F. E. M. (1984). Performance of one-and two-row tube and plate fin heat exchangers. Journal of heat transfer, 106(3), 627-632
22. Coney, J. E. R., Kazeminejad, H., & Sheppard, C. G. W. (1989). Dehumidification of air on a vertical rectangular fin: a numerical study. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 203(3), 165-175.