Forced vibration of piezoelectric nanowires based on nonlocal elasticity theory

Document Type: Research Paper

Authors

1 University of Mazandaran naser.kordani@umz.ac.ir

2 University of Semnan

3 Semnan University

4 Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

In this paper, a numerical solution procedure is presented for the free and forced vibration of a piezoelectric nanowire under thermo-electro-mechanical loads based on the nonlocal elasticity theory within the framework of Timoshenko beam theory. The influences of surface piezoelectricity, surface elasticity and residual surface stress are taken into consideration. Using Hamilton’s principle, the nonlocal governing differential equations are derived. The governing equations and the related boundary conditions are discretized by using the differential quadrature method (DQM). The numerical results are obtained for both free and forced vibration of piezoelectric nanowires. The present results are validated by available results in the literature. The effects of the nonlocal parameter together with the other parameters such as residual surface stress, temperature change and external electric voltage on the size-dependent forced vibration of the piezoelectric nanowires are studied. It is shown that the nonlocal effect (small scale effect) plays a prominent role in the forced vibration of piezoelectric nanowires and this effect cannot be neglected for small external characteristic lengths. The resonant frequency increases with increasing the residual surface stress. In addition, as the surface elastic constant increases, the resonant frequency of PNWs increases, while the surface piezoelectric constant has a decreasing effect on the resonant frequency.

Keywords

Main Subjects


[1] H.D. Espinosa, B.C. Prorok, Size effects on the mechanical behavior of gold thin films, Journal of Materials Science, Vol. 38, Issue 20, pp. 4125-4128, 2003.
[2] Q. Wang, V.K. Varadan, S.T. Quek, Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models, Physics Letters A, Vol. 357, Issue 2, pp. 130–135, 2006.
[3] R. Ansari, M.A. Ashrafi, S. Hosseinzadeh, Vibration characteristics of piezoelectric microbeams based on the modified couple stress theory, Shock and Vibration, Vol. 2014, Article ID 598292, 2014.

[4] A. C. Eringen, , Nonlocal Continuum Field Theories, Springer-Verlag, New York, 1970.
[5] A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, Vol. 54, pp. 4703–4710, 1983.
[6] M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communication, Vol. 39, pp. 23-27, 2012.
[7] S.H. Hosseini-Hashemi, M. Fakher, R. Nazemnezhad, Surface effects on free vibration analysis of nanobeams using nonlocal elasticity: A comparison between Euler-Bernoulli and Timoshenko, Journal of Solid Mechanics, 5 (3), pp. 290-304, 2013.
[8] L. Behera, S. Chakraverty, Free vibration of Euler and Timoshenko nanobeams using boundary
characteristic orthogonal polynomials, Applied Nanoscience, 4(3), pp. 347–358, 2014.
[9] A. Oveisi, Free vibration of piezo-nanowires using Timoshenko beam theory with consideration of surface and small scale effects, Archive of Mechanical Engineering, 61(1), pp. 139–152, 2014.
[10] M. Haghpanahi, A. Oveisi, M. Gudarzi, Vibration analysis of piezoelectric nanowires using the finite element method, International Research Journal of Applied and Basic Sciences, Vol, 4 (1), pp. 205- 212, 2013.
[11] A. Farajpour, M. Mohammadi, A.R. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures,43 (10), pp. 1820-1825, 2011.
[12] P. Malekzadeh, A. Farajpour, Axisymmetric free and forced vibrations of initially stressed circular nanoplates embedded in an elastic medium, Acta Mechnica, Vol. 223(11), pp. 2311-2330, 2012.
[13] L.L. Zhang, J.X. Liu, X.Q. Fang, G.Q. Nie, Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates, European Journal of Mechanics A/Solids, 46, pp. 22- 29, 2014.
[14] L.L. Ke, Y.S. Wang, J. Yang, Sritawat Kitipornchai, Free vibration of size-dependent magneto-electro elastic nanoplates based on the nonlocal theory, Acta Mechanica Sinica, 30(4), pp. 516–525, 2014.
[15] Z .W .Pan, Z.R .Dai, Z. L .Wang, Nanobelts of semiconducting oxides, Science, Vol. 291, pp. 1947– 1949, 2001.
[16] L.L.Ke,Y.S. Wang, Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory, Smart Material Structure, Vol. 21, 025018, 2012.
[17] A.T. Samaei, M. Bakhtiari, G. F. Wang, Timoshenko beam model for buckling of piezoelectric nanowires with surface effects, Nanoscale research letters, Vol. 7, 201, 2012.
[18] B. Gheshlaghi, S. M. Hasheminejad, Vibration analysis of piezoelectric nanowires with surface and small scale effects, Current applied physics, Vol. 12 (4), pp. 1096-1099, 2012.
[19] Z. Yan, L. Y. Jiang, Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects, Journal of Physics D Applied Physics, Vol. 44, 365301, 2011.
[20] L.L. Ke, Y.S. Wang, Z.D. Wang, Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory, Composite Structure, Vol. 94, pp. 2038–2047, 2012.
[21] R. Ansari, R. Gholami, H. Rouhi, Size-Dependent nonlinear forced vibration analysis of magnetoelectro- thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory, Composite Structures, Vol. 126, pp. 216–226, 2015.
[22] A. Farajpour, M. Dehghany, A. R. Shahidi, Surface and nonlocal effects on the axisymmetric buckling of circular graphene sheets in thermal environment, Composite Part B–Engineering, Vol. 50, pp. 333-343, 2013.
[23] M. Pang, Y.Q. Zhang, W.Q. Chen Transverse wave propagation in viscoelastic single-walled carbon nanotubes with small scale and surface effects, Journal of Applied Physics, Vol. 117 (2), 024305, 2015.
[24] Z. Yan, L.Y. Jiang, The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects, Nanotechnology, 22, 245703, 2011.
[25] A. Farajpour, A. Rastgoo, M. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mechanics Research Communications, 57, pp. 18-26, 2014.
[26] C.W. Bert, S.K. Jang, A.G. Striz, Two new approximate methods for analyzing free vibration of structural components, J. AIAA, Vol. 26 pp. 612–618, 1988.

[27]          M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco pasternak foundation, Journal of Solid Mechanics, Vol. 6, pp. 98-121, 2014.

[28] C. Shu, “Differential Quadrature and its Application in Engineering” Springer, Great Britain, 2000.