Numerical study and genetic algorithm optimization of hot extrusion process to produce rectangular waveguides

Document Type: Research Paper

Authors

1 School of Metallurgy and Material Engineering, College of Engineering, University of Tehran, Tehran, Iran

2 School of Metallurgy and Material Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Abstract

Rectangular waveguide is one of the earliest types of transmission lines. Rectangular waveguide can be produced by hot extrusion process. In this paper, the hot extrusion process of CuZn5 rectangular waveguide was investigated by Finite Element Method (FEM). In addition, Genetic Algorithm (GA) was used to optimize the die geometry and process conditions to achieve the lowest magnitude of extrusion force. Die geometry was introduced in terms of die length and billet hole diameter under various frictional conditions. It was found that die length and billet hole diameter had contradictory effects on the extrusion force. The experimental study was also carried out to verify the accuracy of estimated results.

Keywords

Main Subjects


[1] ASTM B372, 2003, Standard Specification for Copper Sheet and Strip for Building Construction. ASTM International, West Conshohocken, PA.
[2] Chanda T., Zhou J., Duszczyk J., 2000, FEM analysis of aluminum extrusion through square and
round dies, MATER DESIGN 21: 323-335.
[3] Lee C.M., Yang D.Y., 2000, A three-dimensional steady-state finite element analysis of square die extrusion by using automatic mesh generation, INT J MACH TOOL MANUF 40: 33-47.
[4] Kumar S., Prasad S.K., 2004, Feature-based design of extrusion process using upper-bound and finite element techniques for extrudable shapes, J MATER PROCESS TECHNO 155: 1365-1372.
[5] Malpani M., Kumar S., 2007, A feature based analysis of tube extrusion, J MATER PROCESS TECHNO 190: 363-374.
[6] Gang L., Jie Z., Duszczyk J., 2008, Process optimization diagram based on FEM simulation for extrusion of AZ31 profile, TRANS NONFERR METAL SOC 18: 247-251.
[7] Mao Y., Zhang Q., Sun C., 2010, Study on extrusion forming of superalloy tube under different dies, ADV MAT RES 145: 380-385.
[8] Chung J.S., Hwang S.M., 1997, Application of a genetic algorithm to the optimal design of the die shape in extrusion, J MATER PROCESS TECHNO 72: 69-77.
[9] Narayanasamy R., Venkatesan R., Ponalagusamy R., 2005, Extrusion die profile and extrusion pressure optimization using genetic algorithm, J. ADV INSTR ENG 45: 52-63.
[10] Pathak K.K., Lomash S., Jain N., Jha A.K., 2009, Tube extrusion design for some selected inner profiles, INT J PHYS SCI 4: 69-75.
[11] Wu C.Y., Hsu Y.C., 2002, Optimal shape design of an extrusion die using polynomial networks and genetic algorithms, INT J ADV MANUF TECHNOL 19: 79-87.
[12] Yan H., Xia J., 2005, An approach to the optimal design of technological parameters in the profile extrusion process, SCI TECHNOL ADV MAT 7: 127-131.
[13] UNS Standard. ASTM B36 / B36M - 08a, 2003, Standard Specification for Brass Plate, Sheet, Strip, and Rolled Bar. ASTM International, West Conshohocken, PA.
[14] Naka T., Youshida F., Ohmori M., 1995, Flow stress and ductility of brass with various Zn-contents at wide range of strain rate, J SOC MATER SCI, JAPAN 4: 591-596.
[15] Zain-ul-abdeina M., Nélias D., Jullien J.F., Wagan A.I., 2010, Thermo-mechanical characterization of AA6056-T4 and estimation of its material properties using Genetic Algorithm, MATER DESIGN 31: 4302-4311.
[16] Ebrahimi R., Reihanian M., Kanaani M., Moshksar M.M., 2008, An upper-bound analysis of the tube extrusion process, J MATER PROCESS TECHNO 199: 214-220.
[17] Venkata N.R., Dixit P.M., Lal G.K., 1996, Analysis of axisymmetric tube extrusion, INT J MACH TOOL MANUF 36: 1253-1267.