[1].Soldatos, K.P., Selvadurai, A.P.S. (1985). Flexure of beams resting on hyperbolic elastic foundations, Solids Struct. 21(4): 373-388.
[2].Eisenberger, M., Reich, Y. (1983). Static vibration and stability analysis of non-uniform beams, Comput. Struct. 31(4), 563-571.
[3].Zhaohua, F., Cook, R.D., (?). Beam elements on two-parameter elastic foundations, J. Eng. Mech. 109(6), 1390–1402.
[4].Lee, S.Y., KE, H.Y. (1990). Free vibrations of non-uniform beams resting on non-uniform elastic foundation with general elastic end restraints, Comput. Struct. 34( 3): 421-429.
[5].Attarnejad, R., Shahba, A., Eslaminia, M. (2011). Dynamic basic displacement functions for free vibration analysis of tapered beams, J. Vib. Control 17(14): 2222-2238.
[6].Timoshenko, S.P. (1922). On the transverse vibration of bars of uniform cross-section, Philos Mag 43(253): 125-131.
[7].Cowper, G.R. (1996). The Shear Coefficient in Timoshenko’s Beam Theory, J. Appl. Mech. 33(2): 335-340.
[8].Heiliger, P.R., Reddy, J.N. (1988). A Higher Order Beam Finite Element for Bending and Vibrations Problems, J. Sound Vib. 126(2): 309-326.
[9].Morfidis, K. (2010). Vibration of Timoshenko beams on three-parameter elastic foundation. Comput. Struct. 88(5-6): 294–308.
[10]. Yihua, M., Li, O., Hongzhi, Z. (2009). Vibration Analysis of Timoshenko Beams on a Nonlinear Elastic Foundatin, Tsinghua Sci. Technol. 14(3): 322–326.
[11]. Lee, H.P. (1998). Dynamic Response of a Timoshenko Beam on a Winkler Foundation Subjected to a Moving Mass, Appl. Acoustics 55(3): 203-215.
[12]. Yokoyam, T. (1988). Parametric instability of Timoshenko beams Resting on an elastic foundation, Comput. Struct. 28(2): 207–216.
[13]. Ruta, P. (2006). The application of Chebyshev polynomials to the solution of the nonprismatic Timoshenko beam vibration problem, J. Sound Vib. 296(1-2): 243–263.
[14]. Attarnejad, R., Shahba, A., Jandaghi Semnani, S. (2010). Application of differential transform in free vibration analysis of Timoshenko beams resting on two-parameter elastic foundation, AJSE 35(2B): 121-128.
[15]. Esmailzadeh, E., Ghorashi, M. (1997). Vibration analysis of a Timoshenko beam subjected to a travelling mass, J. Sound Vib. 199(4): 615-628.
[16]. Lin, S.C., Hsiao, K.M. (2001). Vibration analysis of a rotating Timoshenko beam, J. Sound Vib. 240(2): 303–322.
[17]. Yokoyama, T. (1996). Vibration analysis of Timoshenko beam-columns on two-parameter elastic foundations. Comput. Struct. 61(6): 995–1007.
[18]. Levinson, M. (1981). A new rectangular beam theory, J. Sound Vib. 74(1): 81-87.
[19]. Bickford, W.B. (1982). A consistent higher order beam theory, Dev. Theor. Appl. Mech., 11: 137-150.
[20]. Wang, X.D., Shi, G. (2012). Boundary Layer Solutions Induced by Displacement Boundary Conditions of Shear Deformable Beams and Accuracy Study of Several Higher-Order Beam Theories, J. Eng. Mech. 138(11): 1388-1399.
[21]. Reddy, J.N. (1984). A simple higher order theory for laminated composite plates, ASME J. Appl. Mech. 51(4): 745-752.
[22]. Wang, M.Z., Wang, W. (2003). A refined theory of beams, J. Eng. Mech. Suppl. 324-327.
[23]. Gao, Y., Wang, M. (2006). The refined theory of rectangular deep beams based on general solutions of elasticity, Sci in China Ser G 36(3): 286-297.
[24]. Bhimaraddi, A., Chandrashekhara, K. (1993). Observations on higher-order beam theory, J. Aerospace Eng. 6(4): 408–413.
[25]. Chakrabarti, A., Sheikh, A.H., Griffith, M., Oehlers, D.J. (2013). Dynamic Response of Composite Beams with Partial Shear Interaction Using a Higher-Order Beam Theory, J. Struct. Eng. 139(1): 47–56.
[26]. Lam, K.Y., Wang, C.M., He, X.Q. (2000). Canonical exact solutions for Levyplates on a two-parameter foundation using Green’s functions, J. Eng. Struct. 22(4): 364–378.
[27]. Eisenberger, M. (2003). Dynamic stiffness vibration analysis using a high-order beam model, Int. J. Numer. Meth. Eng. 57(11): 1603–1614.
[28]. Heyliger, P.R., Reddy, J.N. (1988). A higher order beam finite element for bending And vibration problems, J. Sound Vib. 126(2): 309–326.
[29]. Matsunaga, H. (1999). Vibration and buckling of deep beam-columns on two-parameter elastic foundations, J. Sound Vib. 228(2): 359–376.
[30]. Winkler, E. (1867). Die Lehre Von Der Elastizitat Und Festigkeit, Prague : Dominicus.
[31]. Pasternak, P.L. (1954). On a New Method of Analysis of an Elastic Foundation by Means of Two-Constants, USSR: Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu I Arkhitekture [in Russian], Moscow.
[32]. Filonenko–Borodich (1940). Some Approximate Theories of Elastic Foundation, Uchenyie Zapiski Moskovskogo
Gosudarstvennogo Universiteta Mekhanica [in Russian], 46: 3–18,
[33]. Hetenyi, M. (1946). Beams on Elastic Foundations, Ann. Arbor. Mich. USA: The University of Michigan Press.
[34]. Hetenyi, M. (1950). A general solution for the bending of beams on an elastic foundation of arbitrary, J Appl. Phys. 21(1): 55-58.
[35]. Vlasov, V.Z., Leontev, U.N. (?). Beams, Plates and Shells on Elastic Foundations. NASA XT F-357 TT 65-50135.
[36]. Catal, S. (2008). Solution of Free Vibration Equations of Beams on Elastic Soil by Using Differential Transform Method, Appl. Math. Model. 32(9): 1744–1757.
[37]. Ho, S.H., Chen, C.K. (1998). Analysis of General Elastically End Restrained Non-Uniform Beams Using Differential Transform, Appl. Math. Model. 22(4-5): 219–234.
[38]. Sayyad, A.S. (2011). Comparison of various refined beam theories for the bending and free vibration analysis of thick beams. Appl. Comput. Mech. 5(2): 217-230.
[39]. Zhao, J.K. (1988). Differential transformation and its application for electrical circuits, Huazhong.
[40]. Chen, C.K., Ho, S.H. (1996). Application of differential transformation eigenvalue problems, Appl. Math. Comput. 79(2-3): 171-179.
[41]. Kaya, M.O. (2006). Free vibration analysis of a rotating timoshenko beam by differential transform method, Aircr Eng Aerosp Tec 78(3): 194-203.
[42]. Ozgumus, O.O., Kaya, M.O. (2006). Flapwise bending vibration analysis of a rotating tapered cantilever bernoulli–euler beam by differential transform method, J. Sound Vib. 289(1-2): 413-420.
[43]. Yalcin, S., Arikoglu, A., Ozkol, I. (2009). Free vibration analysis of circular plates by differential transformation method, Appl. Mathematics and Computation 212(2): 377-386.
[44]. Attarnejad, R., Shahba, A. (2008). Application of differential transform method in free vibration analysis of rotating non-prismatic beams, World Appl. Sci. J. 5(4): 441-448.
[45]. Shahba, A., Rajasekaran, S. (2011). Free vibration and stability of tapered Euler–Bernoulli beams made of axially functionally graded materials, Appl. Math. Model. 36(7): 3094–3111.
[46]. Rajasekaran, S. (2013). Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based dynamic stiffness approach, Meccanica 48(5): 1053–1070.
[47]. Semnani, S.J., Attarnejad, R., Firouzjaei, R.K. (2013). Free Vibration Analysis of Variable Thickness Thin Plates by Two – dimensional Differential Transform Method, Acta Mechanica 224(8): 1643-1658.
[48]. Reddy, J.N. (2002). Energy principles and variational methods in applied mechanic. Wiley.
[49]. De Rosa, M.A. (1995). Free vibration of Timoshenko beams on two-parameter elastic foundation. Comput. Struct. 57(1): 151–156. University Press, Wuhan, China.
[50]. Balkaya, M., Kaya, M.O., Sa˘glamer, A. (2009). Analysis of the vibration of an elastic beam supported on elastic soil using the differential transform method, Arch. Appl. Mech. 79(2): 135–146.
[51]. Touratier, M. (1991). An efficient standard plate theory, Int. J. Eng. Sci. 29(8): 901-916.
[52]. Soldatos, K.P. (1992). A transverse shear deformation theory for homogeneous monoclinic plates, Acta Mechanica 94(3-4): 195-220.
[53]. Aydogdu M. (2009). A new shear deformation theory for laminated composite plates. Compos. Struct. 89(1): 94-101.
[54]. Arikoglu, A., Ozkol, I. (2007). Solution of fractional differential equations by using differential transform method, Chaos Solit. Fract. 34(5): 1473–1481.