[1]. Gunda J.B., Ganguli R., 2008, New rational
interpolation functions for finite element
analysis of rotating beams, Int. J. Mech. Sci. 50:
578-588.
[2]. Caruntu D.I., 2009, Dynamic modal
characteristics of transverse vibrations of
cantilevers of parabolic thickness, Mech. Res.
Commun. 36: 391–404.
[3]. Gallagher R.H., Lee C.H., 1970, Matrix
dynamic and instability analysis with nonuniform
elements, J. Numer. Meth. Eng. 2: 265-
275.
[4]. Karabalis D.L., Beskos D.E., 1983, Static,
dynamic and stability analysis of structures
composed of tapered beams, Comput. Struct. 16: 731-748.
[5]. Eisenberger M., Reich Y., 1989, Static, vibration and stability analysis of non-uniform beams, Comput. Struct. 31: 563-571.
[6]. Eisenberger M., 1986, An exact element method, Int. J. Numer. Meth. Eng. 30: 363-370.
[7]. Eisenberger M., 1991, Exact solution for general variable cross-section members, Comput. Struct. 41: 765-772.
[8]. Banerjee J.R., Williams F.W., 1985, Exact Bernoulli-Euler dynamic stiffness matrix for a range of tapered beam, J. Numer. Meth. Eng. 21: 2289-2302.
[9]. Mou Y., Han R.S.P., Shah A.H., 1997, Exact dynamic stiffness matrix for beams of arbitrarily varying cross sections, Int. J. Numer. Meth. Eng. 40: 233-250.
[10]. Chambers J.J., Almudhafar S., Stenger F., 2003, Effect of reduced beam section frame elements on stiffness of moment frames, J. Struct. Eng. 129: 383-393.
[11]. Kim K.D., Engelhardt M.D., 2007, Nonprismatic beam element for beams with RBS connections in steel moment frames, J. Struct. Eng. 133: 176-184.
[12]. Ece M.C., Aydogdu M., Taskin V., 2007, Vibration of a variable cross-section beam, Mech. Res. Commun. 34: 78-84.
[13]. Banerjee J.R., 2000, Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method. J. Sound Vib. 233: 857-875.
[14]. Wang G., Wereley N.M., 2004, Free vibration analysis of rotating blades with uniform tapers, J. AIAA 42: 2429-2437.
[15]. Banerjee J.R., Su H., 2006, Jackson D.R., Free vibration of rotating tapered beams using the dynamic stiffness method, J. Sound Vib. 298: 1034-1054.
[16]. Ruta P., 1999, Application of Chebyshev series to solution of non-prismatic beam vibration problems, J. Sound Vib. 227: 449-467.
[17]. Auciello N.M., Ercolano A., 2004, A general solution for dynamic response of axially loaded non-uniform Timoshenko beams, Int. J. Solids Struct. 41: 4861–4874.
[18]. Ho S.H., Chen C.K., 1998, Analysis of general elastically end restrained non-uniform beams using differential transform, Appl. Math. Model. 22: 219–234.
[19]. Zeng H., Bert C.W., 2001, Vibration analysis of a tapered bar by differential transformation, J. Sound Vib. 242: 737–739.
[20]. Ozdemir O., Kaya M.O., 2006, Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli–Euler beam by differential transform method, J. Sound Vib. 289: 413–420.
[21]. Ozdemir O., Kaya M.O., 2006, Flapwise bending vibration analysis of double tapere rotating Euler–Bernoulli beam by using the differential transform method, Meccanica 40: 661–670.
[22]. Seval C., 2008, Solution of free vibration equations of beam on elastic soil by using differential transform method, Appl. Math. Model 32: 1744-1757.
[23]. Balkaya M., Kaya M.O., Saglamer A., 2009, Analysis of the vibration of an elastic beam supported on elastic soil using the differential transform method, Arch. Appl. Mech. 79: 135–146.
[24]. Catal S., 2008, Solution of free vibration equations of beam on elastic soil by using differential transform method, Appl. Math. Model. 32: 1744–1757.
[25]. Yesilce Y., Catal S., 2009, Free vibration of axially loaded Reddy-Bickford beam on elastic soil using the differential transform method, Struct. Eng. Mech. 31: 453–476.
[26]. Yesilce Y., 2010, DTM and DQEM for free vibration of axially loaded and semi-rigid-connected Reddy-Bickford beam, Commun. Numer. Meth. Eng. 27: 666-693.
[27]. Attarnejad R., Shahba A., 2008, Application of differential transform method in free vibration analysis of rotating non-prismatic beams, World Appl. Sci. J. 5: 441-448.
[28]. Shahba A., Rajasekaran S., 2012, Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials, Appl. Math. Model. 36: 3094-3111.
[29]. Attarnejad R., 2000, On the derivation of the geometric stiffness and consistent mass matrices for non-prismatic Euler-Bernoulli beam elements, Barcelona, Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering.
[30]. Attarnejad R., 2002, Free vibration of non-prismatic beams, New York, Proceedings of 15th ASCE Engineering Mechanics Conference.
[31]. Attarnejad R., 2010, Basic displacement functions in analysis of non-prismatic beams, Eng. Comput. 27: 733-776.
[32]. Attarnejad R., Shahba A., 2011, Basic displacement functions in analysis of centrifugally stiffened tapered beams, AJSE 36: 841-853.
[33]. Attarnejad R., Shahba A., Semnani S.J., 2011, Analysis of non-prismatic Timoshenko beams using basic displacement functions, Adv. Struct. Eng. 14: 319-332.
[34]. Attarnejad R., Shahba A., 2010, Dynamic basic displacement functions in free vibration analysis of centrifugally stiffened tapered
beams; a mechanical solution, Meccanica 46:
1267-1281.
[35]. Attarnejad R., Shahba A., 2011, Basic
displacement functions for centrifugally
stiffened tapered beams, Commun. Numer.
Meth. Eng. 27: 1385-1397.
[36]. Attarnejad R., Semnani S.J., Shahba A., 2010,
Basic displacement functions for free vibration
analysis of non-prismatic Timoshenko beams,
Finite Elem. Anal. Des. 46: 916-929.
[37]. Attarnejad R., Shahba A., Eslaminia M., 2011,
Dynamic basic displacement functions for free
vibration analysis of tapered beams, J. Vib.
Control 17: 2222-2238.
[38]. Franciosi C., Mecca M., 1998, Some finite
elements for the static analysis of beams with
varying cross section, Comput. Struct. 69: 191-
196.
[39]. Cranch E.T., Adler A.A., 1956, Bending
vibration of variable section beams, J. Appl.
Mech. 23: 103–108.
[40]. Tong X., Tabarrok B., 1995, Vibration
analysis of Timoshenko beams with nonhomogeneity
and varying cross-section, J.
Sound Vib. 186: 821–835.