Closed-form Molecular Mechanics Formulations for the 3D Local Buckling and 2D Effective Young’s Modulus of the Nanosheets

Document Type: Research Paper


1 M.Sc., Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran

2 Professor, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran

3 Assistant Professor, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran


A closed form three-dimensional solution is presented for determination of the local buckling (cell buckling) load of the nanosheets. Moreover, an expression is proposed for the effective 2D Young’s modulus of the unit cell of the nanosheet. In this regard, a three-dimensional efficient space-frame-like geometrical model with angular and extensional compliances is considered to investigate stability and effective Young’s modulus of the nanosheet in terms of the generally possible relative movements of the atoms of the unit cell, in the Cartesian coordinates. The molecular dynamics approach is employed in development of the formulation, taking into account the force constants and bond characteristics. The governing equations are derived based on the principle of minimum total potential energy. Results of the special cases of each of the proposed expressions are verified by the results available in literature or results of the traditional approaches. Comparisons are made with various buckling results reported for different nanosheets, based on different approaches of determination of the stiffness parameters, and a good agreement is noticed.


Main Subjects

[1].Oberlin A., Endo M., Koyama T., 1976, Filamentous Growth of Carbon through Benzene Decomposition, Journal of Crystal Growth 32(3): 335-349.
[2].Iljima S., 1991, Helical microtubules of graphitic carbon, Letters to Nature 354: 56-58.
[3].Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A., 2004, Electric Field Effect in Atomically Thin Carbon Films, Science 306: 666-669.
[4].Corso M., Auwarter W., Muntwiler M., Tamai A., Greber T., Osterwalder J., 2004, Boron Nitride Nanomesh, Science 303: 217-220.
[5].Castellanos-Gomez A., Poot M., Steele G.A., van der Zant H.S.J., Agraït N., Rubio-Bollinger G., 2012, Elastic Properties of Freely Suspended MoS2 Nanosheets, Advaced Materials 24(6): 772–775.
[6].Xu M., Liang T., Shi M., Chen H., 2013, Graphene-Like Two-Dimensional Materials, Chemical Reviews 113(5): 3766–3798.
[7].Wang C.M., Zhang Y.Y., Ramesh S.S., Kitipornchai S., 2006, Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory, Jouranl of Physics D: Applied Physics 39: 3904–3909,.
[8].Wanga Q., Duan W.H., Liew K.M., He X.Q., 2007, Inelastic buckling of carbon nanotubes, Applied Physics Letters 90: 033110.
[9].Sudak L.J., 2003, Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics, Journal of Applied Physics 94(11): 7281-7287.
[10]. Wang Q., Wang C.M., 2007, The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes, Nanotechnology 18: 075702.
[11]. Lu P., Lee H.P., Lu C., Zhang P.Q., 2007, Application of nonlocal beam models for carbon nanotubes, International Journal of Solids and Structures 44: 5289–5300.
[12]. Shi M.X., Li Q.M., Liu B., Feng X.Q., Huang Y., 2009, Atomic-scale finite element analysis of vibration mode transformation in carbon nanorings and single-walled carbon nanotubes, International Journal of Solids and Structures 46: 4342–4360.
[13]. Moosavi H., Mohammadi M., Farajpour A., Shahidi S.H., 2011, Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory, Physica E 44: 135–140.
[14]. Danesh M., Farajpour A., Mohammadi M., 2012, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications 39: 23– 27.
[15]. Aydogdu M., 2012, Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity, Mechanics Research Communications 43: 34–40.
[16]. Arash B., Wang Q., 2012, A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes, Computational Materials Science 51: 303–313.
[17]. Pradhan S.C., 2009, Buckling of single layer graphene sheet based on nonlocal elasticity and 

higher order shear deformation theory, Physics Letters A 373: 4182–4188.
[18]. Narendar S., 2011, Buckling analysis of micro-/nano-scale plates based on two-variable refined plate theory incorporating nonlocal scale effects, Composite Structures 93: 3093–3103.
[19]. Samaeia A.T., Abbasion S., Mirsayar M.M., 2011, Buckling analysis of a single-layer graphene sheet embedded in an elastic medium based on nonlocal Mindlin plate theory, Mechanics Research Communications 38: 481– 485.
[20]. Farajpour A., Mohammadi M., Shahidi A.R., Mahzoon M., 2011, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E 43: 1820–1825.
[21]. Farajpour A., Shahidi A.R., Mohammadi M., Mahzoon M., 2012, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures 94: 1605–1615.
[22]. Narendar S., Gopalakrishnan S., 2012, Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory, Acta Mechanica 223: 395–413.
[23]. Ansari R., Rouhi S., Aryayi M., Mirnezhad M., 2012, On the buckling behavior of single-walled silicon carbide nanotubes, Scientia Iranica 19(6): 1984–1990.
[24]. Tourki Samaei A., Hosseini Hashemi Sh., 2012, Buckling analysis of graphene nanosheets based on nonlocal elasticity theory, International Journal of Nano Dimension 2(4): 227-232.
[25]. Ansari R., Rouhi S., Mirnezhad M., Aryayi M., 2013, Stability characteristics of single-layered silicon carbide nanosheets under uniaxial compression, Physica E 53: 22–28.
[26]. Bedroud M., Hosseini-Hashemi S., Nazemnezhad R., 2013, Buckling of circular/annular Mindlin nanoplates via nonlocal elasticity, Acta Mech 224(11): 2663-2676.
[27]. Sobhy M., 2015, Levy-type solution for bending of single-layered graphene sheets in thermal environment using the two-variable plate theory, International Journal of Mechanical Sciences 90: 171–178.
[28]. Hosseini-Hashemi S., Kermajani M., Nazemnezhad R., 2015, An analytical study on the buckling and free vibration of rectangular nanoplates using nonlocal third-order shear deformation plate theory, European Journal of Mechanics A/Solids 51: 29-43.
[29]. Scarpa F., Adhikari S., Gil A.J., Remillat C., 2010, The bending of single layer graphene
sheets: the lattice versus continuum approach, Nanotechnology 21: 125702 (9pages).
[30]. Casewit C. J., Colwell K.S., Rappe A.K., 1992, Application of Universal Force Field to Organic Molecules, Journal of American Chemical Society 114(25): 10035-10046.
[31]. Song L., Ci L., Lu H., Sorokin P.B., Jin Ch., Ni J., Kvashnin A.G., Kvashnin D.G., Lou J., Yakobson B.I., Ajayan P.M., 2010, Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers, Nano Letters 10: 3209-3215.
[32]. Le M.Q., 2014, Prediction of Young’s modulus of hexagonal monolayer sheets based on molecular mechanics, International Journal of Mechanics and Materials in Design, DOI: 10.1007/s10999-014-9271-0.
[33]. Fitzpatrick R., 2012, An Introduction to Celestial Mechanics, Cambridge University Press.
[34]. Lee C., Wei X., Kysar J.W., Hone J., 2008, Measurement of the elastic properties and intrinsic strength of monolayer grapheme, Science 321: 385-388.
[35]. Mortazavi B., Remond Y., 2012, Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulation, Physica E 44: 1846-1852.
[36]. Panchal M. B., Upadhyay S. H., 2014, Boron nitride nanotube-based biosensor for acetone detection: molecular mechanics-based simulation, Molecular Simulation 40(13): 1035-1042.
[37]. Akdim B., Kim S.N., Naik R.R., Maruyama B., Pender M.J., Pachter R., 2009, Understanding effects of molecular adsorption at a single-wall boron nitride nanotube interface from density functional theory calculations, Nanotechnology 20: 355705.
[38]. Erhart P., Albe K., 2005, Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide, Physical Review B 71: 035211.
[39]. Chowdhurry R., Wang C.Y., Adhikari S., Scarpa F., 2010, Vibration and symmetry-breaking of boron nitride nanotubes, Nanotechnology 21: 365702.
[40]. Sahin H., Cahangirov S., Topsakal M., Bekaroglu E., Akturk E., Senger R.T., Ciraci S., 2009, Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations, Physical Review B 80: 155453.
[41]. Berinskii I.E., Krivtsov A.M., 2010, On using many-particle interatomic potentials to compute elastic properties of graphene and diamond, Mechanics of Solids 45: 815.

[42]. Song L., Ci L., Lu H., Sorokin P.B., Jin Ch., Ni J., Kvashnin A.G., Kvashnin D.G., Lou J., Yakobson B.I., Ajayan P.M., 2010, Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers, Nano Letters 10: 3209-3215.
[43]. Kudin K.N., Scuseria G.E., Yakobson B.I., 2001, C2F, BN, and C nanoshell elasticity from ab initio computations, Physical Review B 64: 235406.
[44]. Oh E.S., 2010, Elastic properties of boron-nitride nanotubes through the continuum lattice approach, Materials Letters 64: 859–862.
[45]. Oh E.S., 2011, Elastic Properties of Various Boron-Nitride Structures, Metals and Materials International 17(1): 21-27.
[46]. Boldrin L., Scarpa F., Chowdhury R., Adhikari S., 2011, Effective mechanical
properties of hexagonal boron nitride nanosheets, Nanotechnology 22: 505702.
[47]. Bosak A., Serrano J., Krisch M., Watanabe K., Taniguchi T., Kanda H., 2006, Elasticity of hexagonal boron nitride: Inelastic x-ray scattering measurements, Physical Review B 73: 041402.
[48]. Le M. Q., 2014, Atomistic study on the tensile properties of hexagonal AlN, BN, GaN, InN and SiC sheets, Journal of Computational and Theoretical Nanoscience 11: 1458–1464.
[49]. Li C., Chou T.W., 2003, A structural mechanics approach for the analysis of carbon nanotubes, International Journal of Solids and Structures 40: 2487-2499.
[50]. Mayo S.L., Olafson B.D., Goddard W.A., 1990, DREIDING: A Generic Force Field for Molecular Simulations, Journal Physical Chemistry 94(26): 8897-8909.