[1] F. Han, Z. Li, J. Zhang, Z. Liu, C. Yao, W. Han, ABAQUS and ANSYS implementations of peridynamics-based finite element method (PeriFEM) for brittle fracture, 2022.
[2] D. L. Logan, 2011, A first course in the finite element method, Thomson,
[3] N. Lv, Application Strategies of Computer Technology in the Field of Mathematical Modeling, Procedia Computer Science, Vol. 243, pp. 1000-1005, 2024.
[4] Z. Xi-Wen, J. Yin-Fu, Y. Zhen-Yu, L. Feng-Tao, C. Xiangsheng, A novel improved edge-based smoothed particle finite element method for elastoplastic contact analysis using second order cone programming, Computer Methods in Applied Mechanics and Engineering, Vol. 441, pp. 118016, 2025.
[5] C. Xian, H. Zhang, Y.-c. Kim, H. Zhang, Y. Liu, Programmed system for fatigue life prediction of excavator turntables based on multi-body dynamics and finite element analysis, Heliyon, Vol. 10, No. 12, 2024.
[6] A. Singh, A. Gani, Analysis of stress behavior of drill tool by using ANSYS-2020 R2, Life Cycle Reliability and Safety Engineering, Vol. 14, No. 1, pp. 105-115, 2025.
[7] S. Paul, P. Roy, A. Chatterjee, P. Pandit, R. Mukherjee, M. Ghosh, Design and analysis of automotive vehicle components with composite materials using Ansys 18.1, Journal of The Institution of Engineers (India): Series D, Vol. 105, No. 3, pp. 1537-1550, 2024.
[8] L. Sabat, C. K. Kundu, Flexural-torsional analysis of steel beam structures using ANSYS, Materials Today: Proceedings, 2023.
[9] A. Asif, M. Dhanapal, U. Megha, S. Nazar, S. R. Jose, Analysis of steel–concrete composite beam using Ansys 18.1 Workbench, Materials Today: Proceedings, 2023.
[10] S. K. Al-Raheem, H. Z. Zainy, A. D. Almawash, L. S. Alansari, S. W. M. Ali, Static deflection of pre-twisted beam subjected to transverse load, Results in Engineering, Vol. 21, pp. 101953, 2024.
[11] A. M. A. Saber, Analytical and finite element investigation on residual stress analysis for composite thermoplastic cantilever beam under unique load, Materials Today: Proceedings, 2023.
[12] M. Pidgurskyi, M. Stashkiv, R. Rohatynskyi, I. Pidgurskyi, V. Senchyshyn, A. Mushak, Investigation of the Stress Intensity Factor for the Edge Crack in I-beam Under Bending Moment, Procedia Structural Integrity, Vol. 59, pp. 322-329, 2024.
[13] Tahera, K. S. Patil, N. Urs, Optimizing beam performance: ANSYS simulation and ANN-based analysis of CFRP strengthening with various opening shapes, Asian Journal of Civil Engineering, Vol. 25, No. 8, pp. 6215-6232, 2024.
[14] M. S. Manharawy, M. Said, A. Salah, A. A. Mahmoud, M. H. El-Diasity, Performance of hollow concrete beams reinforced by gfrp bars and GFRP stirrups under torsion, Engineering Structures, Vol. 334, pp. 120273, 2025.
[15] R. M. Waqas, A. Elahi, M. S. Kırgız, Experimental and finite element analysis of shear deficient of reinforced concrete beam retrofitted externally with carbon fiber reinforced polymer sheet, in Proceeding of, Elsevier, pp. 108232.
[16] S. Al-Jasmi, N. F. Ariffin, M. A. Seman, Model analysis of carbon fiber reinforcement properties for reinforced concrete beams to resist blast loads, Materials Today: Proceedings, Vol. 109, pp. 62-67, 2024.
[17] L. S. Al-Rukaibawi, G. Károlyi, Nonlinear analysis of a bamboo plywood-steel composite I-section beam under bending, Materials Today: Proceedings, 2023.
[18] A. Patane, G. Vesmawala, Experimental and analytical investigation of the behaviour of reinforced concrete beam under pure torsion, Materials Today: Proceedings, 2023.
[19] G. Promsatit, T. Sethaput, W. Atjanakul, A. Boonyaprapasorn, Enhancing web-post buckling resistance in perforated steel beams: An in-depth investigation of elliptical openings, geometric parameters, and ai-driven predictions, in Proceeding of, Elsevier, pp. 107907.
[20] L. V. da Silva, L. M. Mesquita, Elastic lateral-torsional buckling of cellular beams, in Proceeding of, Elsevier, pp. 106392.
[21] J. K. Zaboon, S. F. Jassim, Numerical and analytical analysis for deflection and stress in a simply supported beam, Materials Today: Proceedings, Vol. 49, pp. 2912-2915, 2022.
[22] S. Bajaj, C. Susheel, S. Salodkar, Numerical modelling of sandwich beam structure with MRE core, Materials Today: Proceedings, 2024.
[23] P. Manibalan, S. Kesavan, G. Abirami, R. Baskar, Fatigue response of RC beam strengthened by BFRP laminate, Case Studies in Construction Materials, Vol. 18, pp. e01707, 2023.
[24] K. J. Wadi, J. M. Yadeem, L. S. Al-Ansari, H. J. Abdulsamad, Static deflection calculation for axially FG cantilever beam under uniformly distributed and transverse tip loads, Results in Engineering, Vol. 14, pp. 100395, 2022.
[25] T. A. El-Sayed, Y. A. Algash, Flexural behavior of ultra-high performance geopolymer RC beams reinforced with GFRP bars, Case Studies in Construction Materials, Vol. 15, pp. e00604, 2021.
[26] L. V. H. Bui, C. Thongchom, S. Sirimontree, P. T. Nguyen, T.-T. Nguyen, S. Keawsawasvong, P. Nuaklong, P. Jongvivatsakul, Experimental, numerical, and analytical study of concrete beams reinforced with steel stirrups and embedded with functional plates, in Proceeding of, Elsevier, pp. 293-309.
[27] S. Barour, A. Zergua, Numerical analysis of reinforced concrete beams strengthened in shear using carbon fiber reinforced polymer materials, Journal of Engineering, Design and Technology, Vol. 19, No. 2, pp. 339-357, 2021.
[28] S. Barour, A. Zergua, F. Bouziadi, W. Abed Jasim, Finite element analysis of CFRP-externally strengthened reinforced concrete beams subjected to three-point bending, World Journal of Engineering, Vol. 17, No. 2, pp. 183-202, 2020.
[29] D. Jindra, Z. Kala, J. Kala, S. Seitl, Experimental and numerical simulation of a three point bending test of a stainless steel beam, Transportation Research Procedia, Vol. 55, pp. 1114-1121, 2021.
[30] A. Ibrahim, H. S. Askar, M. E. El-Zoughiby, Torsional behavior of solid and hollow concrete beams reinforced with inclined spirals, Journal of King Saud University-Engineering Sciences, Vol. 34, No. 5, pp. 309-321, 2022.
[31] A. Hassan, F. Khairallah, H. Elsayed, A. Salman, H. Mamdouh, Behaviour of concrete beams reinforced using basalt and steel bars under fire exposure, Engineering Structures, Vol. 238, pp. 112251, 2021.
[32] A. Fajri, A. R. Prabowo, E. Surojo, F. Imaduddin, J. M. Sohn, R. Adiputra, Validation and verification of fatigue assessment using FE analysis: A study case on the notched cantilever beam, Procedia Structural Integrity, Vol. 33, pp. 11-18, 2021.
[33] H.-X. Wan, B. Huang, M. Mahendran, Experiments and numerical modelling of cold-formed steel beams under bending and torsion, Thin-Walled Structures, Vol. 161, pp. 107424, 2021.
[34] Pandimani, M. R. Ponnada, Y. Geddada, Numerical nonlinear modeling and simulations of high strength reinforced concrete beams using ANSYS, Journal of Building Pathology and Rehabilitation, Vol. 7, No. 1, pp. 22, 2022.
[35] A. A. Mahmoud, B. K. El Gani, T. S. Mustafa, A. N. Khater, Experimental, Numerical, and Analytical Investigation of the Reinforced Concrete Hidden and Wide Beams, International Journal of Concrete Structures and Materials, Vol. 18, No. 1, pp. 73, 2024.
[36] L.-l. Liu, L.-z. Jiang, C.-d. Li, W.-b. Zhou, L.-x. Nie, Distortional Buckling Analysis of I-Steel Concrete Composite Beams Subjected to Hogging Moment, International Journal of Steel Structures, Vol. 22, No. 3, pp. 864-879, 2022.
[37] A. I. Hassanin, H. F. Shabaan, A. I. Elsheikh, The effects of shear stud distribution on the fatigue behavior of steel–concrete composite beams, Arabian Journal for Science and Engineering, Vol. 45, No. 10, pp. 8403-8426, 2020.
[38] A. Ghoniem, Deep learning shear capacity prediction of fibrous recycled aggregate concrete beams strengthened by side carbon fiber-reinforced polymer sheets, Composite Structures, Vol. 300, pp. 116137, 2022.
[39] M. V. Kumar, Y. Siddaramaiah, C. Jaideep, A. C. Ganesh, An analytical studies on static and fatigue response of steel fibre and re-cycled aggregate integrated high strength concrete beam, Materials Today: Proceedings, Vol. 66, pp. 1810-1818, 2022.
[40] P. Jagtap, S. Pore, Strengthening of fully corroded steel I-beam with CFRP laminates, Materials Today: Proceedings, Vol. 43, pp. 2170-2175, 2021.
[41] T. Tahenni, F. Bouziadi, B. Boulekbache, S. Amziane, Experimental and nonlinear finite element analysis of shear behaviour of reinforced concrete beams, in Proceeding of, Elsevier, pp. 1582-1596.
[42] M. Said, A. S. Shanour, T. Mustafa, A. H. Abdel-Kareem, M. M. Khalil, Experimental flexural performance of concrete beams reinforced with an innovative hybrid bars, Engineering Structures, Vol. 226, pp. 111348, 2021.
[43] A. M. El-Basiouny, H. S. Askar, M. E. El-Zoughiby, Experimental and numerical study on the performance of externally prestressed reinforced high strength concrete beams with openings, SN Applied Sciences, Vol. 3, No. 1, pp. 37, 2021.
[44] J. Zhang, P. Zhou, C. Guan, T. Liu, W.-H. Kang, P. Feng, S. Gao, An ultra-lightweight CFRP beam-string structure, Composite Structures, Vol. 257, pp. 113149, 2021.
[45] L. Rex, P. Raghunath, K. Suguna, Nonlinear finite element modeling and experimental investigation of SFRC beams strengthened with GFRP laminate under static loading, Innovative Infrastructure Solutions, Vol. 7, No. 3, pp. 213, 2022.
[46] M. A. Farouk, A. M. Moubarak, A. Ibrahim, H. Elwardany, New alternative techniques for strengthening deep beams with circular and rectangular openings, Case Studies in Construction Materials, Vol. 19, pp. e02288, 2023.
[47] C. B. Nayak, U. T. Jagadale, K. M. Jadhav, S. G. Morkhade, G. K. Kate, S. B. Thakare, R. L. Wankhade, Experimental, analytical and numerical performance of RC beams with V-shaped reinforcement, Innovative Infrastructure Solutions, Vol. 6, No. 1, pp. 2, 2021.
[48] A. Yosri, G. M. Ghanem, M. A. Salama, A. Ehab, Structural performance of laminated composite thin-walled beams under four-point bending, Innovative Infrastructure Solutions, Vol. 4, No. 1, pp. 58, 2019.
[49] Y. Tang, M. K. Matikainen, A. Mikkola, The improvements of new absolute nodal coordinate formulation based continuum beam elements in convergence, accuracy and efficiency, European Journal of Mechanics-A/Solids, Vol. 105, pp. 105252, 2024.
[50] N. Bykiv, V. Iasnii, E. Kosicka, Joining the rebars with strengthened elements in a concrete beam, Procedia Structural Integrity, Vol. 59, pp. 793-798, 2024.
[51] G. Liu, G. Liu, W. Jiang, Modeling and calculation of shear capacity of prestressed high strength concrete beams with web reinforcement based on BIM, Ain Shams Engineering Journal, Vol. 15, No. 1, pp. 102360, 2024.
[52] A. Soltani, M. Soltani, Comparative study on the lateral stability strength of laminated composite and fiber-metal laminated I-shaped cross-section beams, Journal of Computational Applied Mechanics, Vol. 53, No. 2, pp. 190-203, 2022.
[53] H. Elizalde, D. Cárdenas, A. Delgado-Gutierrez, O. Probst, In-plane shear-axial strain coupling formulation for shear- deformable composite thin-walled beams, Journal of Applied and Computational Mechanics, Vol. 7, No. 2, pp. 450-469, 2021.
[54] K. L. T. Quang, D. D. T. My, B. T. Van, Structural analysis of continuous beam using finite element method and ANSYS software, JOURNAL OF MATERIALS & CONSTRUCTION, Vol. 11, No. 02, pp. 42-Page 48, 2021.
[55] A. Chudzik, Ansys code applied to investigate the dynamics of composite sandwich beams, Mechanics and Mechanical Engineering, Vol. 25, No. 1, pp. 62-71, 2021.
[56] K. S. Atea, L. S. Al-Ansari, Studying the critical buckling load of FG beam using ANSYS, in Proceeding of, 7-22.
[57] O. Krantovska, L. Ksonshkevych, S. Synii, R. Pasichnyk, Y. Maskalkova, Modeling of the stress-strain state of a continuous reinforced concrete beam in ANSYS mechanical, in Proceeding of.
[58] G. Kamel, A. Djamal, M. Rachid, M. Seddik, ANSYS Creep Modeling in a Beam with a 45° of Opening Crack, in Proceeding of, 41-52.
[59] B. H. Osman, Experimental study on the behavior of pre-loaded reinforced concrete (RC) deep beams with openings strengthened with FRP sheets, World Journal of Engineering, Vol. 22, No. 1, pp. 148-159, 2025.
[60] I. Džolev, S. Kekez-Baran, A. Rašeta, Fire Resistance of Steel Beams with Intumescent Coating Exposed to Fire Using ANSYS and Machine Learning, Buildings, Vol. 15, No. 13, 2025.
[61] P. Van-Phuc, Determination Method of the Structural Strength of Deep Reinforced Concrete Beams Using ANSYS Software, in Proceeding of, 255-267.
[62] Y. Shen, L. Lin, Z. Feng, Finite element analysis of reinforced concrete beams with openings in the abdomen and strengthened with steel sleeves based on ANSYS, in Proceeding of.
[63] A. S. Deraman, R. Niirmel, M. R. Mohamad, Analysis of Rectangular Flexible Horizontal Piezoelectric Cantilever Beam Base on ANSYS, in Proceeding of.
[64] T. T. Khong, Q. T. Tran, V. T. Do, Modeling of reinforced concrete beam retrofitted with fiber reinforced polymer composite by using ansys software, in Proceeding of, 295-309.
[65] G. S. B. Charan, G. N. M. Rao, Vibrational and finite element analyses of T-Section cantilever beam using ANSYS and MATLAB, in Proceeding of.
[66] D. N. Moulika, R. Vasireddy, P. P. Raju, Modelling and analysis of reinforced concrete beam under flexure using ANSYS, International Journal of Civil Engineering and Technology, Vol. 8, No. 3, pp. 1103-1111, 2017.
[67] B. M. Lazzari, A. C. Filho, P. M. Lazzari, A. R. Pacheco, Using the element-embedded rebar model in ansys to analyze reinforced concrete beams, in Proceeding of.
[68] Q. S. Ling, J. Tan, C. M. Zhai, S. G. Li, Simulation analysis of simply-supported T beam bridge with continuous slab-deck structure based on ANSYS, in Proceeding of, 1204-1209.
[69] M. Romaszko, M. Wegrzynowski, FEM analysis of a cantilever sandwich beam with MR fluid based on ANSYS, Solid State Phenomena, Vol. 208, pp. 63-69, 2014.
[70] B. Anupriya, K. Jagadeesan, Shear strength of castellated beam with and without stiffeners using FEA (ANSYS 14), International Journal of Engineering and Technology, Vol. 6, No. 4, pp. 1970-1981, 2014.
[71] X. Z. Zhang, L. L. Liu, K. D. Tang, Nonlinear analysis of reinforced concrete beam by ANSYS, in Proceeding of, 663-666.
[72] C. You, X. S. Wang, Y. X. Zhu, Structure optimization analysis and application of continuous beam based on ANSYS, in Proceeding of, 570-572.
[73] Y. B. Liu, X. Z. Zhang, ANSYS simply supported deep beams based on the study of mechanical properties, in Proceeding of, 782-785.
[74] P. Jayajothi, R. Kumutha, K. Vijai, Finite element analysis of frp strengthened RC beams using ansys, Asian Journal of Civil Engineering, Vol. 14, No. 4, pp. 631-642, 2013.
[75] R. Li, Y. Zhang, Frequencies and modals analysis of prestressed concrete beam by ANSYS, in Proceeding of, 769-773.
[76] L. H. Xu, Y. Chi, R. Y. Li, J. Su, Realization of ANSYS for nonlinear finite element analysis of steel fiber reinforced concrete deep beams, Yantu Lixue/Rock and Soil Mechanics, Vol. 29, No. 9, pp. 2577-2582, 2008.
[77] A. Tuohuti, G. Qi, Nonlinear analysis of wood beam with software ANSYS, World Information on Earthquake Engineering, Vol. 23, No. 3, pp. 152-157, 2007.
[78] A. H. A. Hassan, N. Kurgan, Bending analysis of thin FGM skew plate resting on Winkler elastic foundation using multi-term extended Kantorovich method, Engineering Science and Technology, an International Journal, Vol. 23, No. 4, pp. 788-800, 2020.
[79] R. D. Karthic, R. Risheek, N. Harish, K. J. Geonel, L. B. Rao, Buckling analysis of structural steel panel with multiple configuration of stiffeners, Materials Today: Proceedings, 2023.
[80] I.-B. Kim, U. Song-Hak, S.-H. Sin, Global stiffness determination of a cross-ply laminated composite plate with distributed delaminations and matrix cracks and its application, Composite Structures, Vol. 233, pp. 111586, 2020.
[81] B. Huang, S. Ren, Y. Fu, G. Zhao, A high-accuracy continuous shear stress multilayered plate model for FG-CNTRC structures, Acta Mechanica, Vol. 234, No. 2, pp. 553-575, 2023.
[82] S. Verma, A. Gupta, R. Prasad, D. Oguamanam, NURBS-based isogeometric formulation for linear and nonlinear buckling analysis of laminated composite plates using constrained and unconstrained TSDTs, Aerospace Science and Technology, Vol. 155, pp. 109561, 2024.
[83] A. R. Ranji, F. Ahmadi, S. Alirezaee, Ultimate strength analysis of pitted plates with transverse cracks, Transactions of the Canadian Society for Mechanical Engineering, Vol. 46, No. 4, pp. 708-715, 2022.
[84] D. K. Singh, P. Agarwal, Analysis of steel-concrete-steel sandwich plate structure, Materials Today: Proceedings, Vol. 58, pp. 846-849, 2022.
[85] R. Jain, M. S. Azam, Effect of partial elastic foundation on the bending behavior of functionally graded tapered porous plates utilizing Rayleigh–Ritz approach and deformation prediction with artificial neural network, International Journal on Interactive Design and Manufacturing (IJIDeM), pp. 1-23, 2025.
[86] J. Heo, Z. Yang, W. Xia, S. Oterkus, E. Oterkus, Buckling analysis of cracked plates using peridynamics, Ocean Engineering, Vol. 214, pp. 107817, 2020.
[87] L. Rodríguez-Tembleque, J. Vargas, E. García-Macías, F. Buroni, A. Sáez, XFEM crack growth virtual monitoring in self-sensing CNT reinforced polymer nanocomposite plates using ANSYS, Composite Structures, Vol. 284, pp. 115137, 2022.
[88] A. Aabid, M. N. S. B. Rosli, M. Hrairi, M. Baig, Enhancing repair of cracked plate using fiber-reinforced composite patch: Experimental and simulation analysis, Forces in Mechanics, Vol. 18, pp. 100302, 2025.
[89] M. B. Fotovat, M. Zaczynska, Fast and accurate closed form solutions for post-buckling of laminated plates with different boundary conditions, Thin-Walled Structures, Vol. 213, pp. 113278, 2025.
[90] A. M. K. Wong, J. Hwang, S. Li, N.-K. Cho, A novel formula for predicting the ultimate compressive strength of the cylindrically curved plates, International Journal of Naval Architecture and Ocean Engineering, Vol. 16, pp. 100562, 2024.
[91] D. K. Pathak, R. Purohit, A. Soni, H. S. Gupta, Buckling analysis of composite laminated plate in different boundary conditions under thermo mechanical loading, Materials Today: Proceedings, Vol. 44, pp. 2211-2214, 2021.
[92] K. Vivek, T. S. Babu, K. S. Ram, Buckling analysis of functionally graded thin square plates with triangular cut-out subjected to uni-axial loads, Materials Today: Proceedings, Vol. 24, pp. 662-672, 2020.
[93] S. Gouse Seema Begum, K. Santosh Priya, S. N. Mahammed, Design and transient analysis of friction clutch plate for two wheeler by using ANSYS, International Journal of Advanced Science and Technology, Vol. 28, No. 19, pp. 181-187, 2019.
[94] S. Nallusamy, R. S. Rekha, S. Saravanan, Study on mechanical properties of mono composite steel plate cart spring using pro engineer and ANSYS R16.0, International Journal of Engineering Research in Africa, Vol. 37, pp. 13-22, 2018.
[95] C. Srinivas, A. Basak, Analysis of fiber reinforced polymer plates using finite element method through ansys, International Journal of Applied Engineering Research, Vol. 10, No. 12, pp. 31899-31910, 2015.
[96] W. M. K. Helal, D. Y. Shi, Analysis of functionally graded rectangular plate by ANSYS, Key Engineering Materials, Vol. 572, No. 1, pp. 505-508, 2014.
[97] Q. Huan, Y. Li, Plastic deformation of Honeycomb sandwich plate under impact loading in ansys, in Proceeding of, 387-392.
[98] Y. Mei, M. Li, J. Song, X. Gao, Stress analysis of perforated plate based on ANSYS, in Proceeding of, 1372-1376.
[99] X. Zhao, C. Jin, J. Li, X. Lu, Simulation analysis of integration shear weighing plate based on ANSYS, in Proceeding of, 1563-1566.
[100] H. Liu, Y. Sun, The research on load transverse distribution coefficient of prefabricated skew-plate bridge based on ANSYS, in Proceeding of, 1176-1180.
[101] W. J. Yuan, Y. X. Wu, Coupled thermal-mechanical simulation on quenching of aluminum alloy thick-plate based on ANSYS, Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), Vol. 41, No. 6, pp. 2207-2212, 2010.
[102] V. Jankovski, V. Skaržauskas, The physically nonlinear contact analysis of circular plate on deformable foundation by ansys software, in Proceeding of, 910-917.
[103] X. D. Zhu, Q. D. Qin, The analysis of stress concentration for a thin plate with circular holes based on ansys, Journal of Soochow University Engineering Science Edition, Vol. 24, No. 5, pp. 51-53, 2004.
[104] D. Ahiwale, H. Madake, N. Phadtare, A. Jarande, D. Jambhale, Modal analysis of cracked cantilever beam using ANSYS software, Materials Today: Proceedings, Vol. 56, pp. 165-170, 2022.
[105] A. Ouzizi, F. Abdoun, L. Azrar, Nonlinear dynamics of Timoshenko beams on nonlinear fractional viscoelastic Pasternak foundation under a moving mass, Engineering Structures, Vol. 339, pp. 120543, 2025.
[106] S. K. Jujjuvarapu, L. Devsoth, A. Akarapu, P. Pal, A. K. Pandey, Frequency and damping analysis of hexagonal microcantilever beams, Sensors and Actuators A: Physical, Vol. 375, pp. 115542, 2024.
[107] T.-L. Zhao, X.-M. Li, Y.-F. Du, Nonstationary elastoplastic response analysis of curved beam bridges under spatial variability of earthquake ground motion using absolute displacement method, Soil Dynamics and Earthquake Engineering, Vol. 181, pp. 108626, 2024.
[108] K. Karthik, N. K. Unnam, J. Thamilarasan, S. Kolappan, R. Rameshkumar, Design and analysis of cantilever beam used Kevlar fiber composite for automobile applications, Materials Today: Proceedings, Vol. 59, pp. 1817-1823, 2022.
[109] S. A. Asiri, Dynamic, fatigue and harmonic analysis of a beam to beam system with various cross-sections under impact load, Heliyon, Vol. 8, No. 9, 2022.
[110] S. Shukla, R. Barjibhe, An experimental and numerical comparison of traditional spring DVA in parallel and shape memory alloy actuated DVA in series and parallel for fixed beam vibration control, Materials Today: Proceedings, 2023.
[111] A. Gantayat, M. Sutar, J. Mohanty, Dynamic characteristic of graphene reinforced axial functionally graded beam using finite element analysis, Materials Today: Proceedings, Vol. 62, pp. 5923-5927, 2022.
[112] S. Kant, C. Jawalkar, Comparative modal analysis of cantilever beam made of biocomposites using finite element analysis, Materials Today: Proceedings, Vol. 49, pp. 2330-2334, 2022.
[113] C.-D. Chen, P.-Y. Chen, An improved model of refined zigzag theory with equivalent spring for mode II dominant strain energy release rate of a cracked sandwich beam, Theoretical and Applied Fracture Mechanics, Vol. 125, pp. 103874, 2023.
[114] P. Rajendran, P. Chaupal, B. Meesala, Free and forced vibration analyses of glass fiber− reinforced polymer beam under nonuniform thermal environment, in: Finite Element Analysis of Polymers and Composites, Eds., pp. 185-197: Elsevier, 2024.
[115] P. Singh, A. K. Ansu, P. Kumari, Finite element modelling and analysis of damage detection in concrete beams using piezoelectric patches, Materials Today: Proceedings, Vol. 63, pp. 520-526, 2022.
[116] T. M. Dung, T. Q. K. LAM, Cracks in single-layer and multi-layer concrete beams, Transportation Research Procedia, Vol. 63, pp. 2589-2600, 2022.
[117] A. Sahu, N. Pradhan, S. Sarangi, Static and dynamic analysis of smart functionally graded beams, Materials Today: Proceedings, Vol. 24, pp. 1618-1625, 2020.
[118] K. M. Saheb, G. Kanneti, P. Sathujoda, Large amplitude forced vibrations of Timoshenko beams using coupled displacement field method, Forces in Mechanics, Vol. 7, pp. 100079, 2022.
[119] R. Selvaraj, M. Subramani, G. More, M. Ramamoorthy, Dynamic responses of laminated composite sandwich beam with double-viscoelastic core layers, Materials Today: Proceedings, Vol. 46, pp. 7468-7472, 2021.
[120] D. Pathak, S. Kushari, S. Maity, L. Patnaik, S. Kumar, S. Dey, Vibration analysis of cracked cantilever beam using response surface methodology, Journal of Vibration Engineering & Technologies, Vol. 11, No. 5, pp. 2429-2452, 2023.
[121] S. Shajid, S. I. Sajol, M. S. Hossain, Vibrational Analysis of Beams with V-Notch Cracks: A Finite Element Approach to Structural Health Monitoring, Journal of Failure Analysis and Prevention, Vol. 25, No. 1, pp. 89-109, 2025.
[122] R. Jafari-Talookolaei, H. Ghandvar, E. Jumaev, S. Khatir, T. Cuong-Le, Free vibration and transient response of double curved beams connected by intermediate straight beams, Applied Mathematics and Mechanics, Vol. 46, No. 1, pp. 37-62, 2025.
[123] L. Jiang, Y. Q. Wang, Time-varying frequency characteristics of accelerated rotating functionally graded material beams under thermal shock, Acta Mechanica, Vol. 236, No. 2, pp. 707-728, 2025.
[124] L. Li, Y. Wang, Y. Guo, D. Zhang, Large deformations of hyperelastic curved beams based on the absolute nodal coordinate formulation, Nonlinear Dynamics, Vol. 111, No. 5, pp. 4191-4204, 2023.
[125] M. S. Taima, M. B. Shehab, T. A. El-Sayed, M. I. Friswell, Comparative study on free vibration analysis of rotating bi-directional functionally graded beams using multiple beam theories with uncertainty considerations, Scientific Reports, Vol. 13, No. 1, pp. 17917, 2023.
[126] A. Sivasuriyan, D. Vijayan, N. Sankaran, D. Parthiban, Finite element analysis of RC beams using static experimental data to predict static and dynamic behaviors, Scientific Reports, Vol. 14, No. 1, pp. 31238, 2024.
[127] R. Bachoo, Wave analysis of elastically restrained multi-span laminated beams, Journal of Mechanical Science and Technology, Vol. 37, No. 12, pp. 6233-6244, 2023.
[128] S. Sui, C. Zhu, C. Li, Z. Lei, Free vibration of axially traveling moderately thick FG plates resting on elastic foundations, Journal of vibration engineering & technologies, Vol. 11, No. 1, pp. 329-341, 2023.
[129] Z. Zhou, M. Chen, K. Xie, Non-uniform rational B-spline based free vibration analysis of axially functionally graded tapered Timoshenko curved beams, Applied Mathematics and Mechanics, Vol. 41, No. 4, pp. 567-586, 2020.
[130] Y. Chu, Y. Zhang, S. Li, Y. Ma, S. Yang, A machine learning approach for identifying vertical temperature gradient in steel-concrete composite beam under solar radiation, Advances in Engineering Software, Vol. 196, pp. 103695, 2024.
[131] B. G. Kumar, V. Velmurugan, V. Paramasivam, S. Thanikaikarasan, Prediction of material discontinuity and modal analysis of aluminium beam using finite element method, Materials Today: Proceedings, Vol. 21, pp. 782-786, 2020.
[132] A. Yadav, N. Singh, Investigation for accelerometer mass effects on natural frequency of magnesium alloy simply supported beam, Materials Today: Proceedings, Vol. 28, pp. 2561-2565, 2020.
[133] M. Kumar, S. K. Sarangi, Harmonic response of carbon nanotube reinforced functionally graded beam by finite element method, Materials Today: Proceedings, Vol. 44, pp. 4531-4536, 2021.
[134] A. K. Shukla, P. Goswami, P. R. Maiti, Failure propensity of GFRP strengthen RC beam, Journal of Failure Analysis and Prevention, Vol. 20, No. 4, pp. 1308-1322, 2020.
[135] Y. Jing, W. Luping, X. Jin, Design and implementation of vibration energy harvester based on MSMA cantilever beam, Transactions on Electrical and Electronic Materials, Vol. 21, No. 4, pp. 399-405, 2020.
[136] E. S. M. M. Soliman, Investigation of modal and damage parameters of isotropic cantilever beam under double-sided crack, Journal of Failure Analysis and Prevention, Vol. 20, No. 1, pp. 120-136, 2020.
[137] P. K. Samal, I. Pruthvi, B. Suresh, Effect of fiber orientation on vibration response of glass epoxy composite beam, Materials Today: Proceedings, Vol. 43, pp. 1519-1525, 2021.
[138] B. S. Koo, Longitudinal bending behaviors of hot-rolled H-beams by quenching and self-tempering, Engineering Failure Analysis, Vol. 133, pp. 106009, 2022.
[139] B. El-Taly, M. Hamdy, K. Kandil, A. Bashandy, Structural behavior of strengthened Concrete-Encased steel beams with web openings, International Journal of Civil Engineering, Vol. 19, No. 3, pp. 245-263, 2021.
[140] M. A. Al-Zahrani, S. A. Asiri, K. I. Ahmed, M. A. Eltaher, Free vibration analysis of 2D functionally graded strip beam using finite element method, Journal of Applied and Computational Mechanics, Vol. 8, No. 4, pp. 1422-1430, 2022.
[141] L. K. Toke, M. M. Patil, Vibration analysis and control of cracked beam using finite element method by using ANSYS, World Journal of Engineering, Vol. 20, No. 5, pp. 938-955, 2023.
[142] S. Deepak, R. A. Shetty, Static and free vibration analysis of functionally graded rectangular plates using ANSYS, Materials Today: Proceedings, Vol. 45, pp. 415-419, 2021.
[143] T. Kubiak, M. B. Fotovat, Dynamic response and dynamic buckling of general laminated plates: A semi-inverse method, Composite Structures, Vol. 324, pp. 117548, 2023.
[144] M. Kumar, V. Kar, M. Chandravanshi, Free vibration analysis of sandwich composite plate with honeycomb core, Materials Today: Proceedings, Vol. 56, pp. 931-935, 2022.
[145] M. B. Shehab, M. S. Taima, H. Sayed, T. A. El-Sayed, An investigation into the free vibration of intact and cracked FGM plates, Journal of Failure Analysis and Prevention, Vol. 23, No. 5, pp. 2142-2168, 2023.
[146] A. Mohanty, S. P. Parida, R. R. Dash, Modal response of sandwich plate having carbon-epoxy faceplate with different honeycomb core material and geometry considerations, International Journal on Interactive Design and Manufacturing (IJIDeM), Vol. 18, No. 6, pp. 4223-4232, 2024.
[147] M. G. Kareem, S. E. Sadiq, S. K. Al-Raheem, L. S. Alansari, Analysis the free vibration of functionally graded material plate by using new displacement function, Results in Engineering, Vol. 25, pp. 103756, 2025.
[148] B. N. Singh, V. Ranjan, R. Hota, Optimization of vibration and noise reduction in sigmoid functionally graded plates using mode localization, Wave Motion, pp. 103577, 2025.
[149] H. Zhang, Y. Zhang, W. Sun, H. Luo, H. Ma, F. Liu, K. Xu, An improved MIMO sliding mode control for multi-modal vibration suppression of CFRC plates in thermal environment, Engineering Structures, Vol. 341, pp. 120820, 2025.
[150] Y. Wu, Y. Duan, J. Shao, D. Li, J. Xu, Free vibration analysis of damaged laminated piezoelectric plates and composite plates with piezoelectric patch based on the Extended Layerwise Method, Thin-Walled Structures, Vol. 208, pp. 112666, 2025.
[151] H. Zhang, W. Sun, Y. Zhang, H. Luo, H. Ma, K. Xu, Active vibration control of functionally graded graphene nanoplatelets reinforced composite plates with piezoelectric layers under multi-order excitation, Engineering Structures, Vol. 322, pp. 119208, 2025.
[152] P. F. P. Hose, D. A. Krishna, Free vibration analysis of polymer composite plates reinforced with graphene platelets, Materials Today: Proceedings, Vol. 65, pp. 961-968, 2022.
[153] Q. Xiong, H. Guan, H. Ma, Z. Wu, J. Zeng, W. Wang, H. Wang, Crack propagation and induced vibration characteristics of cracked cantilever plates under resonance state: experiment and simulation, Mechanical Systems and Signal Processing, Vol. 201, pp. 110674, 2023.
[154] M. A. M. Norman, M. R. M. Razean, M. H. M. Rosaidi, M. S. Ismail, J. Mahmud, Effect of fibre volume on the natural frequencies of laminated composite plate, Materials Today: Proceedings, Vol. 75, pp. 133-139, 2023.
[155] S. Tiwari, A. G. Barman, C. K. Hirwani, Dynamic deflection behaviour of plant fibre reinforced laminated composite plate structure using simulation model, Materials Today: Proceedings, Vol. 91, pp. 39-43, 2023.
[156] R. K. K. Reddy, N. George, S. Mohan, V. Bhagat, M. Arunkumar, Vibro-acoustic behavior of metallic foam doubly-curved plates, Materials Today: Proceedings, Vol. 64, pp. 83-89, 2022.
[157] M. B. Fotovat, T. Kubiak, P. Perlikowski, Mixed mode nonlinear response of rectangular plates under static and dynamic compression, Thin-Walled Structures, Vol. 184, pp. 110542, 2023.
[158] S. Kumar, V. R. Kar, Three-dimensional thermal analysis of multidirectional (perfect/porous) functionally graded plate under in-plane heat flux, Materials Today: Proceedings, Vol. 56, pp. 879-882, 2022.
[159] N. Pradhan, S. Sarangi, Nonlinear vibration analysis of smart functionally graded plates, Materials Today: Proceedings, Vol. 44, pp. 1870-1876, 2021.
[160] B. Arab, R. Ganesan, Free vibration response of internally-thickness-tapered laminated composite square plates based on an energy method, Composite Structures, Vol. 259, pp. 113238, 2021.
[161] N. ur Rahman, M. N. Alam, J. A. Ansari, An experimental study on dynamic analysis and active vibration control of smart laminated plates, Materials Today: Proceedings, Vol. 46, pp. 9550-9554, 2021.
[162] S. Agarwal, B. Dash, P. Saini, N. Sharma, T. R. Mahapatra, S. K. Panda, Vibroacoustic analysis of un-baffled layered composite plate under thermal environment, Materials Today: Proceedings, Vol. 24, pp. 1020-1028, 2020.
[163] H. K. Pandey, H. C. Dewangan, P. V. Katariya, C. K. Hirwani, S. K. Panda, The effect of hybridisation by hollow glass-cenosphere on the modal response of the laminated composite plate, Materials Today: Proceedings, Vol. 33, pp. 5024-5028, 2020.
[164] M. Shen, Q. Wang, R. Wang, X. Guan, Vibration analysis of rotating functionally graded graphene platelet reinforced composite shaft-disc system under various boundary conditions, Engineering Analysis with Boundary Elements, Vol. 144, pp. 380-398, 2022.
[165] K. Srividya, J. Surendra, K. K. Kishore, C. M. Sumanth, K. Bharath, Experimental and analytical studies on natural frequencies of thin bonded metallic plates, Materials Today: Proceedings, Vol. 44, pp. 2257-2260, 2021.
[166] L. S. Yousuf, Nonlinear dynamics investigation of flexural stiffness of composite laminated plate under the effect of temperature and combined loading using Lyapunov exponent parameter, Composites Part B: Engineering, Vol. 219, pp. 108926, 2021.
[167] N. Naumova, D. Ivanov, N. Dorofeev, Vibrations of a Plate with Periodically Changing Parameters, Vestnik St. Petersburg University, Mathematics, Vol. 54, No. 4, pp. 411-417, 2021.
[168] Y. Wang, J. Fan, X. Shen, X. Liu, J. Zhang, N. Ren, Free vibration analysis of stiffened rectangular plate with cutouts using Nitsche based IGA method, Thin-Walled Structures, Vol. 181, pp. 109975, 2022.
[169] W. Yu, R. Guo, Y. Zhao, M. Chen, Isogeometric flutter analysis of a heated laminated plate with and without cutout, Thin-Walled Structures, Vol. 206, pp. 112652, 2025.
[170] P. Rout, A. K. Jha, P. Gupta, B. Singh, S. Choudhury, Failure analysis of composite plate under ballistic impact, Materials Today: Proceedings, Vol. 74, pp. 1008-1011, 2023.
[171] K. M. Saheb, S. Deepak, Free vibration analysis of a laminated composite plate using experimental modal testing, Materials Today: Proceedings, Vol. 72, pp. 1573-1583, 2023.
[172] R. Kumar, S. Tiwari, C. K. Hirwani, On transient responses of sandwich plate with cutout using FEM, Materials Today: Proceedings, 2023.
[173] M. Narwariya, A. Choudhury, A. K. Sharma, Parametric study on Harmonic Analysis of anti-symmetric laminated composite Plate, Materials Today: Proceedings, Vol. 5, No. 9, pp. 20232-20238, 2018.
[174] B. R. Thakur, S. Verma, B. Singh, D. Maiti, Dynamic analysis of flat and folded laminated composite plates under hygrothermal environment using a nonpolynomial shear deformation theory, Composite Structures, Vol. 274, pp. 114327, 2021.
[175] S. S. Rafi, M. N. Alam, N. Rahman, Dynamic analysis of hybrid sandwich plate, Materials Today: Proceedings, Vol. 46, pp. 10009-10014, 2021.
[176] T. Kim, U. Lee, Temporal and spatial-domain DFT-based spectral element model for the dynamic analysis of a rectangular Mindlin plate, Journal of Sound and Vibration, Vol. 509, pp. 116220, 2021.
[177] J. Song, W. Wang, S. Su, X. Ding, Q. Luo, C. Quan, Experimental study on the bond-slip performance between concrete and a corrugated steel plate with studs, Engineering Structures, Vol. 224, pp. 111195, 2020.
[178] F. Wang, L.-j. Tian, Z.-d. Lyu, Z. Zhao, Q.-k. Chen, H.-l. Mei, Stability of full-scale orthotropic steel plates under axial and biased loading: Experimental and numerical studies, Journal of Constructional Steel Research, Vol. 181, pp. 106613, 2021.
[179] O. Jarali, K. Logesh, V. Khalkar, A. A. M. Moshi, Bending Natural Frequency Analysis on the FML Plates Made up of Different Nano Fillers Using Experimental and Numerical Means, Journal of Vibration Engineering & Technologies, Vol. 12, No. 7, pp. 8851-8866, 2024.
[180] P. P. Karumbaiah, P. C. Prathuri, K. Tushar, N. Y. Mehta, M. Sachhidananda, Effect of manufacturing defects on Vibrational Analysis of Coconut Fiber Reinforced Composite Plate, Journal of The Institution of Engineers (India): Series C, pp. 1-8, 2025.
[181] H. Raad, E. K. Najim, M. J. Jweeg, M. Al-Waily, L. Hadji, R. Madan, Vibration analysis of sandwich plates with hybrid composite cores combining porous polymer and foam structures, Journal of Computational Applied Mechanics, Vol. 55, No. 3, pp. 485-499, 2024.
[182] R. K. Shinagam, D. R. K. Vengalasetti, T. Maruvada, Crack detection and localization in composite plates by intersection of first three normalized mode shape curves from experimental modal analysis, World Journal of Engineering, 2024.
[183] A. S. Patil, R. Moheimani, H. Dalir, Thermomechanical analysis of composite plates curing process using ANSYS composite cure simulation, Thermal Science and Engineering Progress, Vol. 14, pp. 100419, 2019.
[184] K. Kalita, D. Shinde, S. Haldar, Analysis on transverse bending of rectangular plate, Materials Today: Proceedings, Vol. 2, No. 4-5, pp. 2146-2154, 2015.
[185] F. Klimenda, J. Soukup, Modal analysis of thin aluminium plate, Procedia Engineering, Vol. 177, pp. 11-16, 2017.
[186] J. J. J. Britto, A. Vasanthanathan, P. Nagaraj, Finite element modeling and simulation of condition monitoring on composite materials using piezoelectric transducers-ANSYS®, Materials Today: Proceedings, Vol. 5, No. 2, pp. 6684-6691, 2018.
[187] S. Dey, T. Mukhopadhyay, A. Spickenheuer, S. Adhikari, G. Heinrich, Bottom up surrogate based approach for stochastic frequency response analysis of laminated composite plates, Composite Structures, Vol. 140, pp. 712-727, 2016.
[188] H. Arora, R. Singh, G. S. Brar, Prediction of temperature distribution and displacement of carbon steel plates by FEM, Materials Today: Proceedings, Vol. 18, pp. 3380-3386, 2019.
[189] S. Khare, N. Mittal, Three-dimensional free vibration analysis of thick laminated composite circular plates with simply-supported boundary conditions, Materials Today: Proceedings, Vol. 4, No. 9, pp. 10054-10061, 2017.
[190] M. K. Nikhil, B. S. Indrajeet, D. C. Utkarsh, R. Manoharan, Modal analysis of hybrid laminated composite sandwich plate, Materials Today: Proceedings, Vol. 5, No. 5, pp. 12453-12466, 2018.
[191] M. J. Jhung, K. H. Jeong, Free vibration analysis of perforated plate with square penetration pattern using equivalent material properties, Nuclear Engineering and Technology, Vol. 47, No. 4, pp. 500-511, 2015.
[192] M. Gharaibeh, Vibration analysis of rectangular plates resting on four rigid supports, World Journal of Engineering, Vol. 15, No. 1, pp. 110-118, 2018.
[193] F. T. Al-Maliky, D. A. K. Alshakarchi, Modal analysis of central crack stainless steel plate using ansys program, International Journal of Mechanical Engineering and Technology, Vol. 9, No. 9, pp. 460-466, 2018.
[194] K. Bendine, B. F. Boukhoulda, M. Nouari, Z. Satla, Structural modeling and active vibration control of smart FGM plate through ANSYS, International Journal of Computational Methods, Vol. 14, No. 4, 2017.
[195] E. García-Macías, R. Castro-Triguero, E. I. Saavedra Flores, M. I. Friswell, R. Gallego, Static and free vibration analysis of functionally graded carbon nanotube reinforced skew plates, Composite Structures, Vol. 140, pp. 473-490, 2016/04/15/, 2016.
[196] D. Zahariea, Numerical analysis of eccentric orifice plate using ANSYS Fluent software, in Proceeding of.
[197] H. R. Siddiqui, V. Shivhare, Free vibration analysis of eccentric and concentric isotropic stiffened plate using ANSYS, Engineering Solid Mechanics, Vol. 3, No. 4, pp. 223-234, 2015.
[198] Z. Zhang, F. Huang, Dynamics analysis of the MRF rectangular sandwich plate based on ANSYS, in Proceeding of, 651-659.
[199] C. Demir, Y. Alapan, Modeling and dynamic response analysis of an point supported plate by using ANSYS and MATLAB, in Proceeding of, 1088-1093.
[200] X. M. Wang, J. Z. Wang, Z. Y. Gao, X. J. Zhu, Simulation and experimental study on active vibration control of piezoelectric smart plate based on ANSYS, in Proceeding of, 257-260.