Numerical investigation of compact-tension specimen failure based on auxetic structures

Document Type : Research Paper

Authors

School of Mechanical Engineering, University of Tehran, Tehran, Iran

Abstract

The study of crack growth behavior and fracture mechanisms in engineering materials plays a pivotal role in enhancing the design of resilient structures and in the development of advanced materials. In this context, auxetic structures, characterized by a negative Poisson's ratio, have introduced new perspectives in the field of fracture mechanics due to their unique properties. The present work numerically investigates the fracture behavior of a compact-tension (CT) specimen with a pre-crack and standard geometric dimensions, based on auxetic cellular structures fabricated from 7075-T651 Aluminum Alloy. The objective is to evaluate crack propagation, reaction forces and energy absorption in various lattice structures with negative and positive Poisson’s ratios. For this purpose, the specimen geometries were designed by embedding unit cell patterns within the rectangular region of the specimen while maintaining the uniform thickness of the surrounding cell walls. Uniaxial tensile loading was then simulated using pre-designed grips. Furthermore, a uniaxial tensile test simulation was conducted for all specimens in accordance with relevant standards to determine and compare their Poisson's ratios. To facilitate a mass-independent comparison of structural performance, the reaction forces were normalized. Analysis of the results indicates that the auxetic structures developed in this study exhibit a significant improvement in fracture resistance over the conventional re-entrant auxetic structure.

Keywords

Main Subjects

[1]          K. S. Ravi Chandran, Fracture mechanics analysis of generalized compact tension specimen geometry using the mechanics of net-section, Eng. Fract. Mech., Vol. 222, No. 106703, pp. 106703, 2019/12, 2019.
[2]          J. Wang, J. Hu, P. Jin, H. Chen, S. Fu, Z. Liu, H. Gao, X. Wang, X. Chen, Fracture parameters analysis of compact tension specimens with deflected fatigue cracks: ZK60 magnesium alloy, Theor. Appl. Fract. Mech., Vol. 127, No. 104068, pp. 104068, 2023/10, 2023.
[3]          E. A. Esleman, T. Batu, G. Önal, Q. Wu, Investigation of fracture behaviour of hybrid composite materials under compact tension, Results Eng., Vol. 25, No. 104616, pp. 104616, 2025/3, 2025.
[4]          A. H. Jabbari, Z. Silvayeh, P. Auer, J. Stippich, A. Drexler, J. Domitner, Evaluation of environment-assisted cracking using wedge-loaded compact tension specimens, Procedia Struct. Integr., Vol. 68, pp. 874-879, 2025, 2025.
[5]          W. Yang, Z.-M. Li, W. Shi, B.-H. Xie, M.-B. Yang, Review on auxetic materials, J. Mater. Sci., Vol. 39, No. 10, pp. 3269-3279, 2004/5, 2004.
[6]          M. Balan P, J. Mertens A, M. V. A. R. Bahubalendruni, Auxetic mechanical metamaterials and their futuristic developments: A state-of-art review, Mater. Today Commun., Vol. 34, No. 105285, pp. 105285, 2023/3, 2023.
[7]          X. Xue, C. Lin, F. Wu, Z. Li, J. Liao, Lattice structures with negative Poisson’s ratio: A review, Mater. Today Commun., Vol. 34, No. 105132, pp. 105132, 2023/3, 2023.
[8]          B. Heidarpour, A. Rahi, M. Shahravi, Analytical modeling and parametric study of equivalent stiffness for auxetic structures, Journal of Computational Applied Mechanics, Vol. 54, No. 3, pp. 336-346, 2023. en
[9]          Y. Zhang, H. Yu, S. Zhu, J. Wang, Fracture mechanics analysis of auxetic chiral materials, Int. J. Mech. Sci., Vol. 295, No. 110281, pp. 110281, 2025/6, 2025.
[10]        L. J. Gibson, M. F. Ashby, The mechanics of three-dimensional cellular materials, Proc. R. Soc. Lond., Vol. 382, No. 1782, pp. 43-59, 1982/7/8, 1982.
[11]        R. Lakes, Deformation mechanisms in negative Poisson's ratio materials: structural aspects, J. Mater. Sci., Vol. 26, No. 9, pp. 2287-2292, 1991, 1991.
[12]        U. D. Larsen, O. Signund, S. Bouwsta, Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio, J. Microelectromech. Syst., Vol. 6, No. 2, pp. 99-106, 1997/6, 1997.
[13]        A. Rahimi-Lenji, M. Heidari-Rarani, M. Mirkhalaf, M. Mirkhalaf, On the internal architecture of lightweight negative Poisson's ratio (auxetic) metastructures: a review, arXiv preprint arXiv:2505.07385, 2025.
[14]        J. B. Choi, R. S. Lakes, Fracture toughness of re-entrant foam materials with a negative Poisson's ratio: experiment and analysis, Int. J. Fract., Vol. 80, No. 1, pp. 73-83, 1996, 1996.
[15]        Y. Prawoto, A. Alias, Stress intensity factor and plastic zone of auxetic materials: A fracture mechanics approach to a chiral structure having negative Poisson’s ratio, Mech. Adv. Mater. Struct., Vol. 22, No. 3, pp. 213-223, 2015/3/4, 2015.
[16]        S. Yang, V. B. Chalivendra, Y. K. Kim, Fracture and impact characterization of novel auxetic Kevlar®/Epoxy laminated composites, Compos. Struct., Vol. 168, pp. 120-129, 2017/5, 2017.
[17]        M. Zouaoui, O. Saifouni, J. Gardan, A. Makke, N. Recho, J. Kauffmann, Improvement of fracture toughness based on auxetic patterns fabricated by metallic extrusion in 3D printing, Procedia Struct. Integr., Vol. 42, pp. 680-686, 2022, 2022.
[18]        A. Esmaeili, M. Karimi, M. Heidari-Rarani, M. Shojaie, A new design of star auxetic metastructure with enhanced energy-absorption under various loading rates: Experimental and numerical study, Structures, Vol. 63, 2024.
[19]        H. M. A. Kolken, A. F. Garcia, A. D. Plessis, A. Meynen, C. Rans, L. Scheys, M. J. Mirzaali, A. A. Zadpoor, Mechanisms of fatigue crack initiation and propagation in auxetic meta-biomaterials, Acta Biomater., Vol. 138, pp. 398-409, 2022/1/15, 2022.
[20]        W. He, W. Luo, J. Zhang, Z. Wang, Investigation on the fracture behavior of octet-truss lattice based on the experiments and numerical simulations, Theor. Appl. Fract. Mech., Vol. 125, No. 103918, pp. 103918, 2023/6, 2023.
[21]        A. Alshoaibi, A two dimensional Simulation of crack propagation using Adaptive Finite Element Analysis, Journal of Computational Applied Mechanics, Vol. 49, No. 2, pp. 335-341, 2018. en
[22]        J. Kramberger, B. Nečemer, S. Glodež, Assessing the cracking behavior of auxetic cellular structures by using both a numerical and an experimental approach, Theor. Appl. Fract. Mech., Vol. 101, pp. 17-24, 2019/6, 2019.
[23]        J. S. Hu, B. L. Wang, H. Hirakata, K. F. Wang, Thermal shock fracture analysis of auxetic honeycomb layer based on non-Fourier heat conduction, Engineering Structures, Vol. 279, No. 115581, pp. 115581, 2023/3, 2023.
[24]        A. International, Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, ASTM International, 1990.
[25]        T. Zhao, Y. Jiang, Fatigue of 7075-T651 aluminum alloy, International Journal of Fatigue, Vol. 30, No. 5, pp. 834-849, 2008.
[26]        N. E. Dowling, 2012, Mechanical Behavior of Materials, Pearson, Upper Saddle River, NJ, 4thed.
[27]        C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Computer Methods in Applied Mechanics and Engineering, Vol. 199, No. 45-48, pp. 2765-2778, 2010.
[28]        COMSOL. Strain-based Damage Models, Accessed 8 October 2025; https://doc.comsol.com/6.0/doc/com.comsol.help.sme/sme_ug_theory.06.42.html. English
[29]        A. International, Standard Test Method for Poisson’s Ratio at Room Temperature, ASTM International, 2017.
Volume 57, Issue 1
January 2026
Pages 134-149
  • Receive Date: 11 October 2025
  • Revise Date: 16 November 2025
  • Accept Date: 16 November 2025