[1] K. S. Ravi Chandran, Fracture mechanics analysis of generalized compact tension specimen geometry using the mechanics of net-section, Eng. Fract. Mech., Vol. 222, No. 106703, pp. 106703, 2019/12, 2019.
[2] J. Wang, J. Hu, P. Jin, H. Chen, S. Fu, Z. Liu, H. Gao, X. Wang, X. Chen, Fracture parameters analysis of compact tension specimens with deflected fatigue cracks: ZK60 magnesium alloy, Theor. Appl. Fract. Mech., Vol. 127, No. 104068, pp. 104068, 2023/10, 2023.
[3] E. A. Esleman, T. Batu, G. Önal, Q. Wu, Investigation of fracture behaviour of hybrid composite materials under compact tension, Results Eng., Vol. 25, No. 104616, pp. 104616, 2025/3, 2025.
[4] A. H. Jabbari, Z. Silvayeh, P. Auer, J. Stippich, A. Drexler, J. Domitner, Evaluation of environment-assisted cracking using wedge-loaded compact tension specimens, Procedia Struct. Integr., Vol. 68, pp. 874-879, 2025, 2025.
[5] W. Yang, Z.-M. Li, W. Shi, B.-H. Xie, M.-B. Yang, Review on auxetic materials, J. Mater. Sci., Vol. 39, No. 10, pp. 3269-3279, 2004/5, 2004.
[6] M. Balan P, J. Mertens A, M. V. A. R. Bahubalendruni, Auxetic mechanical metamaterials and their futuristic developments: A state-of-art review, Mater. Today Commun., Vol. 34, No. 105285, pp. 105285, 2023/3, 2023.
[7] X. Xue, C. Lin, F. Wu, Z. Li, J. Liao, Lattice structures with negative Poisson’s ratio: A review, Mater. Today Commun., Vol. 34, No. 105132, pp. 105132, 2023/3, 2023.
[8] B. Heidarpour, A. Rahi, M. Shahravi, Analytical modeling and parametric study of equivalent stiffness for auxetic structures, Journal of Computational Applied Mechanics, Vol. 54, No. 3, pp. 336-346, 2023. en
[9] Y. Zhang, H. Yu, S. Zhu, J. Wang, Fracture mechanics analysis of auxetic chiral materials, Int. J. Mech. Sci., Vol. 295, No. 110281, pp. 110281, 2025/6, 2025.
[10] L. J. Gibson, M. F. Ashby, The mechanics of three-dimensional cellular materials, Proc. R. Soc. Lond., Vol. 382, No. 1782, pp. 43-59, 1982/7/8, 1982.
[11] R. Lakes, Deformation mechanisms in negative Poisson's ratio materials: structural aspects, J. Mater. Sci., Vol. 26, No. 9, pp. 2287-2292, 1991, 1991.
[12] U. D. Larsen, O. Signund, S. Bouwsta, Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio, J. Microelectromech. Syst., Vol. 6, No. 2, pp. 99-106, 1997/6, 1997.
[13] A. Rahimi-Lenji, M. Heidari-Rarani, M. Mirkhalaf, M. Mirkhalaf, On the internal architecture of lightweight negative Poisson's ratio (auxetic) metastructures: a review, arXiv preprint arXiv:2505.07385, 2025.
[14] J. B. Choi, R. S. Lakes, Fracture toughness of re-entrant foam materials with a negative Poisson's ratio: experiment and analysis, Int. J. Fract., Vol. 80, No. 1, pp. 73-83, 1996, 1996.
[15] Y. Prawoto, A. Alias, Stress intensity factor and plastic zone of auxetic materials: A fracture mechanics approach to a chiral structure having negative Poisson’s ratio, Mech. Adv. Mater. Struct., Vol. 22, No. 3, pp. 213-223, 2015/3/4, 2015.
[16] S. Yang, V. B. Chalivendra, Y. K. Kim, Fracture and impact characterization of novel auxetic Kevlar®/Epoxy laminated composites, Compos. Struct., Vol. 168, pp. 120-129, 2017/5, 2017.
[17] M. Zouaoui, O. Saifouni, J. Gardan, A. Makke, N. Recho, J. Kauffmann, Improvement of fracture toughness based on auxetic patterns fabricated by metallic extrusion in 3D printing, Procedia Struct. Integr., Vol. 42, pp. 680-686, 2022, 2022.
[18] A. Esmaeili, M. Karimi, M. Heidari-Rarani, M. Shojaie, A new design of star auxetic metastructure with enhanced energy-absorption under various loading rates: Experimental and numerical study, Structures, Vol. 63, 2024.
[19] H. M. A. Kolken, A. F. Garcia, A. D. Plessis, A. Meynen, C. Rans, L. Scheys, M. J. Mirzaali, A. A. Zadpoor, Mechanisms of fatigue crack initiation and propagation in auxetic meta-biomaterials, Acta Biomater., Vol. 138, pp. 398-409, 2022/1/15, 2022.
[20] W. He, W. Luo, J. Zhang, Z. Wang, Investigation on the fracture behavior of octet-truss lattice based on the experiments and numerical simulations, Theor. Appl. Fract. Mech., Vol. 125, No. 103918, pp. 103918, 2023/6, 2023.
[21] A. Alshoaibi, A two dimensional Simulation of crack propagation using Adaptive Finite Element Analysis, Journal of Computational Applied Mechanics, Vol. 49, No. 2, pp. 335-341, 2018. en
[22] J. Kramberger, B. Nečemer, S. Glodež, Assessing the cracking behavior of auxetic cellular structures by using both a numerical and an experimental approach, Theor. Appl. Fract. Mech., Vol. 101, pp. 17-24, 2019/6, 2019.
[23] J. S. Hu, B. L. Wang, H. Hirakata, K. F. Wang, Thermal shock fracture analysis of auxetic honeycomb layer based on non-Fourier heat conduction, Engineering Structures, Vol. 279, No. 115581, pp. 115581, 2023/3, 2023.
[24] A. International, Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, ASTM International, 1990.
[25] T. Zhao, Y. Jiang, Fatigue of 7075-T651 aluminum alloy, International Journal of Fatigue, Vol. 30, No. 5, pp. 834-849, 2008.
[26] N. E. Dowling, 2012, Mechanical Behavior of Materials, Pearson, Upper Saddle River, NJ, 4thed.
[27] C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Computer Methods in Applied Mechanics and Engineering, Vol. 199, No. 45-48, pp. 2765-2778, 2010.
[29] A. International, Standard Test Method for Poisson’s Ratio at Room Temperature, ASTM International, 2017.