Magneto-Bioconvection Dynamics of Synovial Nanofluids: Consequences of Porosity, Rheology, and Heat Generation

Document Type : Research Paper

Authors

1 Mathematical Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt

2 Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa

3 Department of Physics, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

Abstract

The primary objective of this study is to analyze the thermal processes, nanoparticle concentration, and bioconvection mechanisms in a synovial fluid model using numerical methods. Two fluid models are considered: Model (1), representing a shear-thinning fluid, and Model (2), representing a shear-thickening fluid. The influences of magnetic field, porosity, Joule heating, and viscous dissipation are incorporated into the analysis. The governing equations for momentum, energy, nanoparticle concentration, and motile microorganism density are formulated using the lubrication approximation. The resulting nonlinear differential equations are solved numerically using the Runge–Kutta–Merson method and the finite difference scheme.
The effects of key parameters on velocity, temperature, nanoparticle concentration, and motile microorganism density are systematically explored. The study reveals that the magnetic field significantly alters the fluid motion, reducing velocity as magnetic intensity increases, whereas higher velocities are observed in the shear-thinning model. The synovial fluid achieves its maximum velocity near the knee cartilage surface. The temperature profile is higher in Model (1) than in Model (2), primarily due to heat generation effects. The concentration production parameter also affects the thermal field, leading to lower nanoparticle concentrations in Model (1). Moreover, the thermophoretic parameter decreases nanoparticle concentration, while the Brownian motion parameter enhances it. Heat-source-driven fluid motion ultimately reduces the density of motile microorganisms.

Keywords

Main Subjects

[1]          J. C. Maxwell, 1873, A treatise on electricity and magnetism, Oxford: Clarendon Press,
[2]          S. U. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in Proceeding of, American Society of Mechanical Engineers, pp. 99-105.
[3]          C. E. Lee, Rapid and repeated invasions of fresh water by the copepod Eurytemora affinis, Evolution, Vol. 53, No. 5, pp. 1423-1434, 1999, 1999.
[4]          K. V. Wong, O. De Leon, Applications of nanofluids: current and future, Advances in mechanical engineering, Vol. 2, pp. 519659, 2010, 2010.
[5]          A. Imran, R. Akhtar, Z. Zhiyu, M. Shoaib, M. A. Z. Raja, Heat transfer analysis of biological nanofluid flow through ductus efferentes, AIP Advances, Vol. 10, No. 3, 2020, 2020.
[6]          M. R. Eid, Effects of NP shapes on non-Newtonian bio-nanofluid flow in suction/blowing process with convective condition: Sisko model, Journal of Non-Equilibrium Thermodynamics, Vol. 45, No. 2, pp. 97-108, 2020, 2020.
[7]          A. F. Elelamy, N. S. Elgazery, R. Ellahi, Blood flow of MHD non-Newtonian nanofluid with heat transfer and slip effects: Application of bacterial growth in heart valve, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 30, No. 11, pp. 4883-4908, 2020, 2020.
[8]          M. M. Bhatti, A. Riaz, L. Zhang, S. M. Sait, R. Ellahi, Biologically inspired thermal transport on the rheology of Williamson hydromagnetic nanofluid flow with convection: an entropy analysis, Journal of Thermal Analysis and Calorimetry, Vol. 144, pp. 2187-2202, 2021, 2021.
[9]          K. Elangovan, K. Subbarao, K. Gangadhar, An analytical solution for radioactive MHD flow TiO2–Fe3O4/H2O nanofluid and its biological applications, International Journal of Ambient Energy, Vol. 43, No. 1, pp. 7576-7587, 2022, 2022.
[10]        B. K. Sharma, U. Khanduri, N. K. Mishra, K. S. Mekheimer, Combined effect of thermophoresis and Brownian motion on MHD mixed convective flow over an inclined stretching surface with radiation and chemical reaction, International Journal of Modern Physics B, Vol. 37, No. 10, pp. 2350095, 2023, 2023.
[11]        Q. Raza, X. Wang, M. Z. A. Qureshi, S. M. Eldin, A. M. Abd Allah, B. Ali, I. Siddique, Mathematical modeling of nanolayer on biological fluids flow through porous surfaces in the presence of CNT, Case Studies in Thermal Engineering, Vol. 45, pp. 102958, 2023, 2023.
[12]        A. V. Kuznetsov, The onset of thermo-bioconvection in a shallow fluid saturated porous layer heated from below in a suspension of oxytactic microorganisms, European Journal of Mechanics-B/Fluids, Vol. 25, No. 2, pp. 223-233, 2006, 2006.
[13]        A. V. Kuznetsov, The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms, International Communications in Heat and Mass Transfer, Vol. 37, No. 10, pp. 1421-1425, 2010, 2010.
[14]        H. T. Basha, R. Sivaraj, Numerical simulation of blood nanofluid flow over three different geometries by means of gyrotactic microorganisms: applications to the flow in a circulatory system, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 235, No. 2, pp. 441-460, 2021, 2021.
[15]        N. Biswas, N. K. Manna, D. K. Mandal, R. S. R. Gorla, Magnetohydrodynamic bioconvection of oxytactic microorganisms in porous media saturated with Cu–water nanofluid, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 31, No. 11, pp. 3461-3489, 2021, 2021.
[16]        Z. A. Alhussain, A. Renuka, M. Muthtamilselvan, A magneto-bioconvective and thermal conductivity enhancement in nanofluid flow containing gyrotactic microorganism, Case Studies in Thermal Engineering, Vol. 23, pp. 100809, 2021, 2021.
[17]        V. Puneeth, M. Sarpabhushana, M. S. Anwar, E. H. Aly, B. J. Gireesha, Impact of bioconvection on the free stream flow of a pseudoplastic nanofluid past a rotating cone, Heat Transfer, Vol. 51, No. 5, pp. 4544-4561, 2022, 2022.
[18]        K. S. Mekheimer, R. E. Abo-Elkhair, S. I. Abdelsalam, K. K. Ali, A. M. A. Moawad, Biomedical simulations of nanoparticles drug delivery to blood hemodynamics in diseased organs: Synovitis problem, International Communications in Heat and Mass Transfer, Vol. 130, pp. 105756, 2022, 2022.
[19]        D. L. Mahendra, J. U. Viharika, V. Ramanjini, O. D. Makinde, U. B. Vishwanatha, Entropy analysis on the bioconvective peristaltic flow of gyrotactic microbes in Eyring-Powell nanofluid through an asymmetric channel, Journal of the Indian Chemical Society, Vol. 100, No. 3, pp. 100935, 2023, 2023.
[20]        M. B. Arain, A. Zeeshan, M. M. Bhatti, M. S. Alhodaly, R. Ellahi, Description of non-Newtonian bioconvective Sutterby fluid conveying tiny particles on a circular rotating disk subject to induced magnetic field, Journal of Central South University, Vol. 30, No. 8, pp. 2599-2615, 2023, 2023.
[21]        H. Fam, J. T. Bryant, M. Kontopoulou, Rheological properties of synovial fluids, Biorheology, Vol. 44, No. 2, pp. 59-74, 2007, 2007.
[22]        A. Swan, H. Amer, P. Dieppe, The value of synovial fluid assays in the diagnosis of joint disease: a literature survey, Annals of the rheumatic diseases, Vol. 61, No. 6, pp. 493-498, 2002, 2002.
[23]        L. Ben-Trad, C. I. Matei, M. M. Sava, S. Filali, M.-E. Duclos, Y. Berthier, M. Guichardant, N. Bernoud-Hubac, O. Maniti, A. Landoulsi, others, Synovial extracellular vesicles: Structure and role in synovial fluid tribological performances, International Journal of Molecular Sciences, Vol. 23, No. 19, pp. 11998, 2022, 2022.
[24]        U. Khanduri, B. K. Sharma, B. Almohsen, M. M. Bhatti, Electroosmotic and Gyrotactic Microorganisms Effects on MHD Al₂O₃-Cu/Blood Hybrid Nanofluid Flow through Multi-Stenosed Bifurcated Artery, Frontiers in Bioscience-Landmark, Vol. 29, No. 3, pp. 110, 2024, 2024.
[25]        A. Yusuf, S. U. Khan, M. Hassan, M. M. Bhatti, H. F. Öztop, Heat transfer optimization of MWCNT-Al2O3 hybrid nanofluids under convective and irreversible effects, Journal of Umm Al-Qura University for Applied Sciences, pp. 1-15, 2025, 2025.
[26]        S. U. Khan, S. Bibi, A. Bibi, K. B. Saleem, B. M. Alshammari, R. Hajlaoui, L. Kolsi, Evaluation of thermal bioconvective phenomenon for periodically accelerating nonlinear radiated flow of Maxwell nanofluid with triple diffusion effects, Alexandria Engineering Journal, Vol. 93, pp. 22-32, 2024, 2024.
[27]        E. E. Bafe, M. D. Firdi, L. G. Enyadene, Magnetohydrodynamic thermo-bioconvective flow of 3D rotating Williamson nanofluid with Arrhenius activation energy in a Darcy–Forchheimer medium over an exponentially stretching Surface, International Journal of Thermofluids, Vol. 21, pp. 100585, 2024, 2024.
[28]        B. Rothammer, M. Marian, F. Rummel, S. Schroeder, M. Uhler, J. P. Kretzer, S. Tremmel, S. Wartzack, Rheological behavior of an artificial synovial fluid–influence of temperature, shear rate and pressure, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 115, pp. 104278, 2021, 2021.
[29]        J. Liao, S. Miramini, X. Liu, L. Zhang, Computational study on synovial fluid flow behaviour in cartilage contact gap under osteoarthritic condition, Computers in Biology and Medicine, Vol. 123, pp. 103915, 2020, 2020.
[30]        E. Loghman, A. Kamali, F. Bakhtiari-Nejad, M. Abbaszadeh, M. Amabili, On the combined Shooting-Pseudo-Arclength method for finding frequency response of nonlinear fractional-order differential equations, Journal of Sound and Vibration, Vol. 516, pp. 116521, 2022, 2022.
[31]        C.-S. Liu, C.-W. Chang, Periodic solutions of nonlinear ordinary differential equations computed by a boundary shape function method and a generalized derivative-free Newton method, Mechanical Systems and Signal Processing, Vol. 184, pp. 109712, 2023, 2023.
[32]        J. H. Z. Q. Zhou, Y. G. Zhao, Nonlinear buckling and postbuckling of circular plates reinforced with graphene platelets using the shooting method, Journal of Structural Stability and Dynamics Vol. 24, No. 1, pp. 2450001, 2024.
Volume 57, Issue 1
January 2026
Pages 122-133
  • Receive Date: 15 November 2025
  • Accept Date: 15 November 2025