Thermoelastic plane strain solutions to rotating cylinders due to a refined fractional-order theory

Document Type : Research Paper

Authors

1 Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

2 Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt

3 Financial Mathematics and Actuarial Science (FMAS)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

This article develops a fractional-order Lord-Shulman (LS) generalized thermoelastic model to analyze a rotating hollow cylinder under plane strain. The cylinder, with traction-free surfaces, is subjected to non-uniform ramp-type heating on its outer boundary. Governing equations incorporating non-Fourier heat conduction are solved using the Laplace transform technique with numerical inversion. Results for temperature, displacement, stress, and dilatation are computed and graphically presented. The analysis demonstrates that both the fractional-order and ramp-time parameters significantly influence the thermoelastic response. Comparisons with classical Fourier-based theory highlight the model's accuracy in capturing wave propagation phenomena, providing critical insights for the design of structures experiencing sudden thermal loads.

Keywords

Main Subjects

[1]          M. A. Biot, Thermoelasticity and Irreversible Thermodynamics, Journal of Applied Physics, Vol. 27, No. 3, pp. 240-253, 1956.
[2]          Y. Yu-Ching, C. Cha'o-Kuang, Thermoelastic transient response of an infinitely long annular cylinder composed of two different materials, International Journal of Engineering Science, Vol. 24, No. 4, pp. 569-581, 1986/01/01/, 1986.
[3]          Z. Y. L. K. C. Jane, THERMOELASTICITY OF MULTILAYERED CYLINDERS, Journal of Thermal Stresses, Vol. 22, No. 1, pp. 57-74, 1999/02/01, 1999.
[4]          Z. Y. Lee, C. K. Chen, C. I. Hung, Transient thermal stress analysis of multilayered hollow cylinder, Acta Mechanica, Vol. 151, No. 1, pp. 75-88, 2001/03/01, 2001.
[5]          Z.-Y. Lee, Generalized coupled transient response of 3-D multilayered hollow cylinder, International Communications in Heat and Mass Transfer, Vol. 33, No. 8, pp. 1002-1012, 2006/10/01/, 2006.
[6]          P. B. Gaikwad, K. R. Gaikwad, K. P. Ghadle, Study of an exact solution of steady-state thermoelastic problem of a finite length hollow cylinder, International Journal of Computational and Applied Mathematics, Vol. 5, pp. 177+, 2010/03//
//, 2010. English
[7]          A. M. Zenkour, D. S. Mashat, K. A. Elsibai, Bending Analysis of Functionally Graded Plates in the Context of Different Theories of Thermoelasticity, Mathematical Problems in Engineering, Vol. 2009, No. 1, pp. 962351, 2009.
[8]          Y. Tokovyy, O. Hrytsyna, M. Hrytsyna, Thermoelastic response of multilayer cylinders: The direct integration and single-solid approach, Journal of Thermal Stresses, Vol. 47, No. 6, pp. 841-857, 2024/06/02, 2024.
[9]          M. Eskandari-Ghadi, M. Rahimian, A. Mahmoodi, A. Ardeshir-Behrestaghi, Analytical Solution for Two-Dimensional Coupled Thermoelastodynamics in a Cylinder, Civil Engineering Infrastructures Journal, Vol. 46, No. 2, pp. 107-123, 2013.
[10]        A. M. Zenkour, I. A. Abbas, Nonlinear Transient Thermal Stress Analysis of Temperature-Dependent Hollow Cylinders Using a Finite Element Model, International Journal of Structural Stability and Dynamics, Vol. 14, No. 07, pp. 1450025, 2014.
[11]        H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids, Vol. 15, No. 5, pp. 299-309, 1967/09/01/, 1967.
[12]        R. S. Dhaliwal, H. H. Sherief, GENERALIZED THERMOELASTICITY FOR ANISOTROPIC MEDIA, Quarterly of Applied Mathematics, Vol. 38, No. 1, pp. 1-8, 1980.
[13]        H. H. Sherief, M. N. Anwar, A problem in generalized thermoelasticity for an infinitely long annular cylinder, International Journal of Engineering Science, Vol. 26, No. 3, pp. 301-306, 1988/01/01/, 1988.
[14]        H. M. Youssef, GENERALIZED THERMOELASTICITY OF AN INFINITE BODY WITH A CYLINDRICAL CAVITY AND VARIABLE MATERIAL PROPERTIES, Journal of Thermal Stresses, Vol. 28, No. 5, pp. 521-532, 2005/05/01, 2005.
[15]        H. M. Youssef, Problem of generalized thermoelastic infinite medium with cylindrical cavity subjected to a ramp-type heating and loading, Archive of Applied Mechanics, Vol. 75, No. 8, pp. 553-565, 2006/05/01, 2006.
[16]        E. Marchi, G. Zgrablich, Heat Conduction in Hollow Cylinders with Radiation, Proceedings of the Edinburgh Mathematical Society, Vol. 14, No. 2, pp. 159-164, 1964.
[17]        H. M. Youssef, Generalized thermoelastic infinite medium with cylindrical cavity subjected to moving heat source, Mechanics Research Communications, Vol. 36, No. 4, pp. 487-496, 2009/06/01/, 2009.
[18]        S. M. Abo-Dahab, I. A. Abbas, LS model on thermal shock problem of generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity, Applied Mathematical Modelling, Vol. 35, No. 8, pp. 3759-3768, 2011/08/01/, 2011.
[19]        M. A. Elhagary, Generalized thermoelastic diffusion problem for an infinitely long hollow cylinder for short times, Acta Mechanica, Vol. 218, No. 3, pp. 205-215, 2011/05/01, 2011.
[20]        A. M. Zenkour, I. A. Abbas, A generalized thermoelasticity problem of an annular cylinder with temperature-dependent density and material properties, International Journal of Mechanical Sciences, Vol. 84, pp. 54-60, 2014/07/01/, 2014.
[21]        I. A. Abbas, Y. A. elmaboud, Analytical solutions of thermoelastic interactions in a hollow cylinder with one relaxation time, Mathematics and Mechanics of Solids, Vol. 22, No. 2, pp. 210-223, 2017.
[22]        A. M. Zenkour, Generalized Thermoelasticity Theories for Axisymmetric Hollow Cylinders Under Thermal Shock with Variable Thermal Conductivity, Journal of Molecular and Engineering Materials, Vol. 06, No. 03n04, pp. 1850006, 2018.
[23]        H. M. Youssef, A. A. El-Bary, Characterization of the photothermal interaction on a viscothermoelastic semiconducting solid cylinder due to rotation under Lord-Shulman model, Alexandria Engineering Journal, Vol. 60, No. 2, pp. 2083-2092, 2021/04/01/, 2021.
[24]        M. Eker, D. Yarımpabuç, A Generalized Thermoelastic Behaviour of Isotropic Hollow Cylinder, Türk Doğa ve Fen Dergisi, Vol. 11, No. 3, pp. 123-128, September, 2022. en
[25]        A. E. Green, K. A. Lindsay, Thermoelasticity, Journal of Elasticity, Vol. 2, No. 1, pp. 1-7, 1972/03/01, 1972.
[26]        A. E. Green, P. M. Naghdi, A Re-Examination of the Basic Postulates of Thermomechanics, Proceedings of the Royal Society of London Series A, Vol. 432, pp. 171-194, February 01, 1991, 1991.
[27]        A. E. Green, P. M. Naghdi, ON UNDAMPED HEAT WAVES IN AN ELASTIC SOLID, Journal of Thermal Stresses, Vol. 15, No. 2, pp. 253-264, 1992/04/01, 1992.
[28]        A. E. Green, P. M. Naghdi, Thermoelasticity without energy dissipation, Journal of Elasticity, Vol. 31, No. 3, pp. 189-208, 1993/06/01, 1993.
[29]        M. N. Allam, K. A. Elsibai, A. E. AbouElregal, THERMAL STRESSES IN A HARMONIC FIELD FOR AN INFINITE BODY WITH A CIRCULAR CYLINDRICAL HOLE WITHOUT ENERGY DISSIPATION, Journal of Thermal Stresses, Vol. 25, No. 1, pp. 57-67, 2002/01/01, 2002.
[30]        A. M. Zenkour, A. E. Abouelregal, Effect of temperature dependency on constrained orthotropic unbounded body with a cylindrical cavity due to pulse heat flux, Journal of Thermal Science and Technology, Vol. 10, No. 1, pp. JTST0019-JTST0019, 2015.
[31]        A. M. Zenkour, M. A. Kutbi, Multi thermal relaxations for thermodiffusion problem in a thermoelastic half-space, International Journal of Heat and Mass Transfer, Vol. 143, pp. 118568, 2019/11/01/, 2019.
[32]        M. I. A. Othman, I. A. Abbas, Thermal shock problem in a homogeneous isotropic hollow cylinder with energy dissipation, Computational Mathematics and Modeling, Vol. 22, No. 3, pp. 266-277, 2011/07/01, 2011.
[33]        S. Bezzina, A. M. Zenkour, Thermoelastic diffusion of a solid cylinder in the context of modified Green–Naghdi models, Waves in Random and Complex Media, Vol. 34, No. 4, pp. 2476-2497, 2024/07/03, 2024.
[34]        M. Othman, I. Abbas, Effect of Rotation on Magneto-Thermoelastic Homogeneous Isotropic Hollow Cylinder with Energy Dissipation Using Finite Element Method, Journal of Computational and Theoretical Nanoscience, Vol. 12, pp. 2399-2404, 09/01, 2015.
[35]        A. M. Zenkour, M. A. Kutbi, Thermoelastic interactions in a hollow cylinder due to a continuous heat source without energy dissipation, Materials Research Express, Vol. 7, No. 3, pp. 035702, 2020/03/09, 2020.
[36]        Y. Povstenko, Non-axisymmetric solutions to time-fractional diffusion-wave equation in an infinite cylinder, Fractional Calculus and Applied Analysis, Vol. 14, No. 3, pp. 418-435, 2011/09/01, 2011.
[37]        H. Youssef, E. Al-lehaibi, Fractional Order Generalized Thermoelastic Infinite Medium with Cylindrical Cavity Subjected to Harmonically Varying Heat, Engineering, Vol. 3, pp. 32, 01/29, 2011.
[38]        A. E. Abouelregal, Fractional heat conduction equation for an infinitely generalized, thermoelastic, long solid cylinder, International Journal for Computational Methods in Engineering Science and Mechanics, Vol. 17, No. 5-6, pp. 374-381, 2016/11/01, 2016.
[39]        Khamis, Generalized thermoelasticity with fractional order strain of infinite medium with a cylindrical cavity, International Journal of ADVANCED AND APPLIED SCIENCES, 2020.
[40]        S. M. Said, E. M. Abd-Elaziz, M. I. A. Othman, A two-temperature model and fractional order derivative in a rotating thick hollow cylinder with the magnetic field, Indian Journal of Physics, Vol. 97, No. 10, pp. 3057-3064, 2023/09/01, 2023.
[41]        P. Xie, T. He, Investigation on the electromagneto-thermoelastic coupling behaviors of a rotating hollow cylinder with memory-dependent derivative, Mechanics Based Design of Structures and Machines, Vol. 51, No. 6, pp. 3119-3137, 2023/06/03, 2023.
[42]        E. A. N. Al-Lehaibi, Generalized Thermoelastic Infinite Annular Cylinder under the Hyperbolic Two-Temperature Fractional-Order Strain Theory, Fractal and Fractional, Vol. 7, No. 6, pp. 476, 2023.
[43]        M. I. A. Othman, H. M. Atef, Conformable Fractional Order Theory in Thermoelasticity, Mechanics of Solids, Vol. 59, No. 2, pp. 1180-1193, 2024/04/01, 2024.
[44]        S. D. Warbhe, V. Gujarkar, Thermoelastic impact in a thick hollow cylinder using time-fractional-order theory, Journal of Thermal Stresses, Vol. 47, No. 2, pp. 263-274, 2024/02/01, 2024.
[45]        H. Zhu, J. He, T. Zhu, Y. Yue, M. Chen, Analysis of a hollow cylinder with variable thermal conductivity and diffusivity by fractional thermoelastic diffusion theory, Journal of Thermal Stresses, Vol. 47, No. 8, pp. 1055-1072, 2024/08/02, 2024.
[46]        M. Adel, A. El-Dali, M. A. Seddeek, A. S. Yahya, A. A. El-Bary, K. Lotfy, The Fractional Derivative and Moisture Diffusivity for Moore-Gibson-Thompson Model of Rotating Magneto-Semiconducting Material, Journal of Vibration Engineering & Technologies, Vol. 12, No. 1, pp. 233-249, 2024/12/01, 2024.
[47]        H. H. Sherief, E. M. Hussein, New fractional order model of thermoporoelastic theory for a porous infinitely long cylinder saturated with fluid, Waves in Random and Complex Media, Vol. 34, No. 5, pp. 4754-4783, 2024/09/02, 2024.
[48]        A. Zakria, A. E. Abouelregal, Fractional viscoelastic model with a non-singular kernel for a rotating semiconductor circular cylinder permeated by a magnetic field and due to heat flow pulse heating, Waves in Random and Complex Media, Vol. 35, No. 1, pp. 1955-1990, 2025/01/02, 2025.
[49]        H. Wang, Y. Ma, Thermoelastic Response of an Infinite Hollow Cylinder under Fractional Order Dual-Phase-Lag Theory, Mechanics of Solids, Vol. 59, No. 1, pp. 459-482, 2024/02/01, 2024.
[50]        S. E. Khader, A. A. Marrouf, M. Khedr, Application of the fractional-order theory of micropolar thermoelasticity in the solid cylinder, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 46, No. 8, pp. 459, 2024/06/18, 2024.
[51]        G. Honig, U. Hirdes, A method for the numerical inversion of Laplace transforms, Journal of Computational and Applied Mathematics, Vol. 10, No. 1, pp. 113-132, 1984/02/01/, 1984.
Volume 57, Issue 1
January 2026
Pages 11-26
  • Receive Date: 13 September 2025
  • Revise Date: 17 September 2025
  • Accept Date: 18 September 2025