[1] M. A. Biot, Thermoelasticity and Irreversible Thermodynamics, Journal of Applied Physics, Vol. 27, No. 3, pp. 240-253, 1956.
[2] Y. Yu-Ching, C. Cha'o-Kuang, Thermoelastic transient response of an infinitely long annular cylinder composed of two different materials, International Journal of Engineering Science, Vol. 24, No. 4, pp. 569-581, 1986/01/01/, 1986.
[3] Z. Y. L. K. C. Jane, THERMOELASTICITY OF MULTILAYERED CYLINDERS, Journal of Thermal Stresses, Vol. 22, No. 1, pp. 57-74, 1999/02/01, 1999.
[4] Z. Y. Lee, C. K. Chen, C. I. Hung, Transient thermal stress analysis of multilayered hollow cylinder, Acta Mechanica, Vol. 151, No. 1, pp. 75-88, 2001/03/01, 2001.
[5] Z.-Y. Lee, Generalized coupled transient response of 3-D multilayered hollow cylinder, International Communications in Heat and Mass Transfer, Vol. 33, No. 8, pp. 1002-1012, 2006/10/01/, 2006.
[6] P. B. Gaikwad, K. R. Gaikwad, K. P. Ghadle, Study of an exact solution of steady-state thermoelastic problem of a finite length hollow cylinder, International Journal of Computational and Applied Mathematics, Vol. 5, pp. 177+, 2010/03//
//, 2010. English
[7] A. M. Zenkour, D. S. Mashat, K. A. Elsibai, Bending Analysis of Functionally Graded Plates in the Context of Different Theories of Thermoelasticity, Mathematical Problems in Engineering, Vol. 2009, No. 1, pp. 962351, 2009.
[8] Y. Tokovyy, O. Hrytsyna, M. Hrytsyna, Thermoelastic response of multilayer cylinders: The direct integration and single-solid approach, Journal of Thermal Stresses, Vol. 47, No. 6, pp. 841-857, 2024/06/02, 2024.
[9] M. Eskandari-Ghadi, M. Rahimian, A. Mahmoodi, A. Ardeshir-Behrestaghi, Analytical Solution for Two-Dimensional Coupled Thermoelastodynamics in a Cylinder, Civil Engineering Infrastructures Journal, Vol. 46, No. 2, pp. 107-123, 2013.
[10] A. M. Zenkour, I. A. Abbas, Nonlinear Transient Thermal Stress Analysis of Temperature-Dependent Hollow Cylinders Using a Finite Element Model, International Journal of Structural Stability and Dynamics, Vol. 14, No. 07, pp. 1450025, 2014.
[11] H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids, Vol. 15, No. 5, pp. 299-309, 1967/09/01/, 1967.
[12] R. S. Dhaliwal, H. H. Sherief, GENERALIZED THERMOELASTICITY FOR ANISOTROPIC MEDIA, Quarterly of Applied Mathematics, Vol. 38, No. 1, pp. 1-8, 1980.
[13] H. H. Sherief, M. N. Anwar, A problem in generalized thermoelasticity for an infinitely long annular cylinder, International Journal of Engineering Science, Vol. 26, No. 3, pp. 301-306, 1988/01/01/, 1988.
[14] H. M. Youssef, GENERALIZED THERMOELASTICITY OF AN INFINITE BODY WITH A CYLINDRICAL CAVITY AND VARIABLE MATERIAL PROPERTIES, Journal of Thermal Stresses, Vol. 28, No. 5, pp. 521-532, 2005/05/01, 2005.
[15] H. M. Youssef, Problem of generalized thermoelastic infinite medium with cylindrical cavity subjected to a ramp-type heating and loading, Archive of Applied Mechanics, Vol. 75, No. 8, pp. 553-565, 2006/05/01, 2006.
[16] E. Marchi, G. Zgrablich, Heat Conduction in Hollow Cylinders with Radiation, Proceedings of the Edinburgh Mathematical Society, Vol. 14, No. 2, pp. 159-164, 1964.
[17] H. M. Youssef, Generalized thermoelastic infinite medium with cylindrical cavity subjected to moving heat source, Mechanics Research Communications, Vol. 36, No. 4, pp. 487-496, 2009/06/01/, 2009.
[18] S. M. Abo-Dahab, I. A. Abbas, LS model on thermal shock problem of generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity, Applied Mathematical Modelling, Vol. 35, No. 8, pp. 3759-3768, 2011/08/01/, 2011.
[19] M. A. Elhagary, Generalized thermoelastic diffusion problem for an infinitely long hollow cylinder for short times, Acta Mechanica, Vol. 218, No. 3, pp. 205-215, 2011/05/01, 2011.
[20] A. M. Zenkour, I. A. Abbas, A generalized thermoelasticity problem of an annular cylinder with temperature-dependent density and material properties, International Journal of Mechanical Sciences, Vol. 84, pp. 54-60, 2014/07/01/, 2014.
[21] I. A. Abbas, Y. A. elmaboud, Analytical solutions of thermoelastic interactions in a hollow cylinder with one relaxation time, Mathematics and Mechanics of Solids, Vol. 22, No. 2, pp. 210-223, 2017.
[22] A. M. Zenkour, Generalized Thermoelasticity Theories for Axisymmetric Hollow Cylinders Under Thermal Shock with Variable Thermal Conductivity, Journal of Molecular and Engineering Materials, Vol. 06, No. 03n04, pp. 1850006, 2018.
[23] H. M. Youssef, A. A. El-Bary, Characterization of the photothermal interaction on a viscothermoelastic semiconducting solid cylinder due to rotation under Lord-Shulman model, Alexandria Engineering Journal, Vol. 60, No. 2, pp. 2083-2092, 2021/04/01/, 2021.
[24] M. Eker, D. Yarımpabuç, A Generalized Thermoelastic Behaviour of Isotropic Hollow Cylinder, Türk Doğa ve Fen Dergisi, Vol. 11, No. 3, pp. 123-128, September, 2022. en
[25] A. E. Green, K. A. Lindsay, Thermoelasticity, Journal of Elasticity, Vol. 2, No. 1, pp. 1-7, 1972/03/01, 1972.
[26] A. E. Green, P. M. Naghdi, A Re-Examination of the Basic Postulates of Thermomechanics, Proceedings of the Royal Society of London Series A, Vol. 432, pp. 171-194, February 01, 1991, 1991.
[27] A. E. Green, P. M. Naghdi, ON UNDAMPED HEAT WAVES IN AN ELASTIC SOLID, Journal of Thermal Stresses, Vol. 15, No. 2, pp. 253-264, 1992/04/01, 1992.
[28] A. E. Green, P. M. Naghdi, Thermoelasticity without energy dissipation, Journal of Elasticity, Vol. 31, No. 3, pp. 189-208, 1993/06/01, 1993.
[29] M. N. Allam, K. A. Elsibai, A. E. AbouElregal, THERMAL STRESSES IN A HARMONIC FIELD FOR AN INFINITE BODY WITH A CIRCULAR CYLINDRICAL HOLE WITHOUT ENERGY DISSIPATION, Journal of Thermal Stresses, Vol. 25, No. 1, pp. 57-67, 2002/01/01, 2002.
[30] A. M. Zenkour, A. E. Abouelregal, Effect of temperature dependency on constrained orthotropic unbounded body with a cylindrical cavity due to pulse heat flux, Journal of Thermal Science and Technology, Vol. 10, No. 1, pp. JTST0019-JTST0019, 2015.
[31] A. M. Zenkour, M. A. Kutbi, Multi thermal relaxations for thermodiffusion problem in a thermoelastic half-space, International Journal of Heat and Mass Transfer, Vol. 143, pp. 118568, 2019/11/01/, 2019.
[32] M. I. A. Othman, I. A. Abbas, Thermal shock problem in a homogeneous isotropic hollow cylinder with energy dissipation, Computational Mathematics and Modeling, Vol. 22, No. 3, pp. 266-277, 2011/07/01, 2011.
[33] S. Bezzina, A. M. Zenkour, Thermoelastic diffusion of a solid cylinder in the context of modified Green–Naghdi models, Waves in Random and Complex Media, Vol. 34, No. 4, pp. 2476-2497, 2024/07/03, 2024.
[34] M. Othman, I. Abbas, Effect of Rotation on Magneto-Thermoelastic Homogeneous Isotropic Hollow Cylinder with Energy Dissipation Using Finite Element Method, Journal of Computational and Theoretical Nanoscience, Vol. 12, pp. 2399-2404, 09/01, 2015.
[35] A. M. Zenkour, M. A. Kutbi, Thermoelastic interactions in a hollow cylinder due to a continuous heat source without energy dissipation, Materials Research Express, Vol. 7, No. 3, pp. 035702, 2020/03/09, 2020.
[36] Y. Povstenko, Non-axisymmetric solutions to time-fractional diffusion-wave equation in an infinite cylinder, Fractional Calculus and Applied Analysis, Vol. 14, No. 3, pp. 418-435, 2011/09/01, 2011.
[37] H. Youssef, E. Al-lehaibi, Fractional Order Generalized Thermoelastic Infinite Medium with Cylindrical Cavity Subjected to Harmonically Varying Heat, Engineering, Vol. 3, pp. 32, 01/29, 2011.
[38] A. E. Abouelregal, Fractional heat conduction equation for an infinitely generalized, thermoelastic, long solid cylinder, International Journal for Computational Methods in Engineering Science and Mechanics, Vol. 17, No. 5-6, pp. 374-381, 2016/11/01, 2016.
[39] Khamis, Generalized thermoelasticity with fractional order strain of infinite medium with a cylindrical cavity, International Journal of ADVANCED AND APPLIED SCIENCES, 2020.
[40] S. M. Said, E. M. Abd-Elaziz, M. I. A. Othman, A two-temperature model and fractional order derivative in a rotating thick hollow cylinder with the magnetic field, Indian Journal of Physics, Vol. 97, No. 10, pp. 3057-3064, 2023/09/01, 2023.
[41] P. Xie, T. He, Investigation on the electromagneto-thermoelastic coupling behaviors of a rotating hollow cylinder with memory-dependent derivative, Mechanics Based Design of Structures and Machines, Vol. 51, No. 6, pp. 3119-3137, 2023/06/03, 2023.
[42] E. A. N. Al-Lehaibi, Generalized Thermoelastic Infinite Annular Cylinder under the Hyperbolic Two-Temperature Fractional-Order Strain Theory, Fractal and Fractional, Vol. 7, No. 6, pp. 476, 2023.
[43] M. I. A. Othman, H. M. Atef, Conformable Fractional Order Theory in Thermoelasticity, Mechanics of Solids, Vol. 59, No. 2, pp. 1180-1193, 2024/04/01, 2024.
[44] S. D. Warbhe, V. Gujarkar, Thermoelastic impact in a thick hollow cylinder using time-fractional-order theory, Journal of Thermal Stresses, Vol. 47, No. 2, pp. 263-274, 2024/02/01, 2024.
[45] H. Zhu, J. He, T. Zhu, Y. Yue, M. Chen, Analysis of a hollow cylinder with variable thermal conductivity and diffusivity by fractional thermoelastic diffusion theory, Journal of Thermal Stresses, Vol. 47, No. 8, pp. 1055-1072, 2024/08/02, 2024.
[46] M. Adel, A. El-Dali, M. A. Seddeek, A. S. Yahya, A. A. El-Bary, K. Lotfy, The Fractional Derivative and Moisture Diffusivity for Moore-Gibson-Thompson Model of Rotating Magneto-Semiconducting Material, Journal of Vibration Engineering & Technologies, Vol. 12, No. 1, pp. 233-249, 2024/12/01, 2024.
[47] H. H. Sherief, E. M. Hussein, New fractional order model of thermoporoelastic theory for a porous infinitely long cylinder saturated with fluid, Waves in Random and Complex Media, Vol. 34, No. 5, pp. 4754-4783, 2024/09/02, 2024.
[48] A. Zakria, A. E. Abouelregal, Fractional viscoelastic model with a non-singular kernel for a rotating semiconductor circular cylinder permeated by a magnetic field and due to heat flow pulse heating, Waves in Random and Complex Media, Vol. 35, No. 1, pp. 1955-1990, 2025/01/02, 2025.
[49] H. Wang, Y. Ma, Thermoelastic Response of an Infinite Hollow Cylinder under Fractional Order Dual-Phase-Lag Theory, Mechanics of Solids, Vol. 59, No. 1, pp. 459-482, 2024/02/01, 2024.
[50] S. E. Khader, A. A. Marrouf, M. Khedr, Application of the fractional-order theory of micropolar thermoelasticity in the solid cylinder, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 46, No. 8, pp. 459, 2024/06/18, 2024.
[51] G. Honig, U. Hirdes, A method for the numerical inversion of Laplace transforms, Journal of Computational and Applied Mathematics, Vol. 10, No. 1, pp. 113-132, 1984/02/01/, 1984.