[1] S. Iyer, R. Gaikwad, V. Subba-Rao, C. Woodworth, I. Sokolov, Atomic force microscopy detects differences in the surface brush of normal and cancerous cells, Nature nanotechnology, Vol. 4, No. 6, pp. 389-393, 2009.
[2] C.-H. Hsieh, Y.-H. Lin, S. Lin, J.-J. Tsai-Wu, C. H. Wu, C.-C. Jiang, Surface ultrastructure and mechanical property of human chondrocyte revealed by atomic force microscopy, Osteoarthritis and cartilage, Vol. 16, No. 4, pp. 480-488, 2008.
[3] K. Dastani, M. Moghimi Zand, A. Hadi, Dielectrophoretic effect of nonuniform electric fields on the protoplast cell, Journal of Computational Applied Mechanics, Vol. 48, No. 1, pp. 1-14, 2017.
[4] D. Vignjevic, G. Montagnac, Reorganisation of the dendritic actin network during cancer cell migration and invasion, in Proceeding of, Elsevier, pp. 12-22.
[5] A. Kordzadeh, S. Javdansirat, N. Javdansirat, H. Tang, S. Ghaderi, A. Hadi, R. Mahmoudi, M. Nikseresht, Investigating Heat-Induced Phase Transitions in POPC Lipid Bilayers Using Molecular Dynamics Simulations, Journal of Computational Applied Mechanics, Vol. 55, No. 4, pp. 771-782, 2024.
[6] N. Miyoshi, H. Tanabe, T. Suzuki, K. Saeki, Y. Hara, Applications of a standardized green tea catechin preparation for viral warts and human papilloma virus-related and unrelated cancers, Molecules, Vol. 25, No. 11, pp. 2588, 2020.
[7] S. K. Tyring, Effect of Sinecatechins on HPV-Activated Cell Growth and Induction of Apoptosis, J Clin Aesthet Dermatol, Vol. 5, No. 2, pp. 34-41, Feb, 2012. eng
[8] Y. Hara, Tea catechins and their applications as supplements and pharmaceutics, Pharmacol Res, Vol. 64, No. 2, pp. 100-4, Aug, 2011. eng
[9] M. S. Chapekar, Tissue engineering: challenges and opportunities, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, Vol. 53, No. 6, pp. 617-620, 2000.
[10] T.-H. Chang, H.-D. Huang, W.-K. Ong, Y.-J. Fu, O. K. Lee, S. Chien, J. H. Ho, The effects of actin cytoskeleton perturbation on keratin intermediate filament formation in mesenchymal stem/stromal cells, Biomaterials, Vol. 35, No. 13, pp. 3934-3944, 2014.
[11] D. Lü, C. Luo, C. Zhang, Z. Li, M. Long, Differential regulation of morphology and stemness of mouse embryonic stem cells by substrate stiffness and topography, Biomaterials, Vol. 35, No. 13, pp. 3945-3955, 2014/04/01/, 2014.
[12] L. Trichet, J. Le Digabel, R. J. Hawkins, S. R. K. Vedula, M. Gupta, C. Ribrault, P. Hersen, R. Voituriez, B. Ladoux, Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness, Proceedings of the National Academy of Sciences, Vol. 109, No. 18, pp. 6933-6938, 2012.
[13] N. Mahmoodi, J. Ai, Z. Hassannejad, S. Ebrahimi-Barough, E. Hasanzadeh, A. Hadi, H. Nekounam, V. Rahimi-Movaghar, Are reported methods for synthesizing nanoparticles and microparticles by magnetic stirrer reproducible?, Journal of Computational Applied Mechanics, Vol. 51, No. 2, pp. 498-500, 2020.
[14] A. Korolj, C. Laschinger, C. James, E. Hu, C. Velikonja, N. Smith, I. Gu, S. Ahadian, R. Willette, M. Radisic, Curvature facilitates podocyte culture in a biomimetic platform, Lab on a Chip, Vol. 18, No. 20, pp. 3112-3128, 2018.
[15] P. A. Janmey, R. T. Miller, Mechanisms of mechanical signaling in development and disease, Journal of cell science, Vol. 124, No. 1, pp. 9-18, 2011.
[16] S. R. Caliari, J. A. Burdick, A practical guide to hydrogels for cell culture, Nature methods, Vol. 13, No. 5, pp. 405-414, 2016.
[17] K. Lee, F. Forudi, G. M. Saidel, M. S. Penn, Alterations in internal elastic lamina permeability as a function of age and anatomical site precede lesion development in apolipoprotein E–null mice, Circulation research, Vol. 97, No. 5, pp. 450-456, 2005.
[18] M. CM, Normal vascular aging: Differential effects on wave reflection and aortic pulse wave velocity, J Am Coll Cardiol, Vol. 46, pp. 1753-1760, 2005.
[19] S. R. Ramezani, A. Mojra, M. Tafazzoli-Shadpour, Investigating the effects of substrate stiffness on half-maximal inhibitory concentration of chemical anticancer drugs, cell viability and migration of cell lines, Cellular, Molecular and Biomedical Reports, pp. 141-147, 2024.
[20] S. Au - Syed, A. Au - Karadaghy, S. Au - Zustiak, Simple Polyacrylamide-based Multiwell Stiffness Assay for the Study of Stiffness-dependent Cell Responses, JoVE, No. 97, pp. e52643, 2015/03/25/, 2015.
[21] R. G. Wells, The role of matrix stiffness in regulating cell behavior, Hepatology, Vol. 47, No. 4, pp. 1394-1400, 2008.
[22] Q. Chai, Y. Jiao, X. Yu, Hydrogels for biomedical applications: their characteristics and the mechanisms behind them, Gels, Vol. 3, No. 1, pp. 6, 2017.
[23] E. Caló, V. V. Khutoryanskiy, Biomedical applications of hydrogels: A review of patents and commercial products, European polymer journal, Vol. 65, pp. 252-267, 2015.
[24] M. Bassil, J. Davenas, M. E. Tahchi, Electrochemical properties and actuation mechanisms of polyacrylamide hydrogel for artificial muscle application, Sensors and Actuators B: Chemical, Vol. 134, No. 2, pp. 496-501, 2008.
[25] M. Bassil, M. Ibrahim, M. El Tahchi, Artificial muscular microfibers: hydrogel with high speed tunable electroactivity, Soft Matter, Vol. 7, No. 10, pp. 4833-4838, 2011.
[26] N. Chirani, L. Yahia, L. Gritsch, F. L. Motta, S. Chirani, S. Farè, History and applications of hydrogels, Journal of biomedical sciences, Vol. 4, No. 02, pp. 1-23, 2015.
[27] K. S. Kim, C. H. Cho, E. K. Park, M.-H. Jung, K.-S. Yoon, H.-K. Park, AFM-detected apoptotic changes in morphology and biophysical property caused by paclitaxel in Ishikawa and HeLa cells, PloS one, Vol. 7, No. 1, pp. e30066, 2012.
[28] C.-C. K. Lin, C.-H. Yang, M.-S. Ju, Cytotoxic and biomechanical effects of clinical dosing schemes of paclitaxel on neurons and cancer cells, Cancer Chemotherapy and Pharmacology, Vol. 86, pp. 245-255, 2020.
[29] A. K. Harris, D. Stopak, P. Wild, Fibroblast traction as a mechanism for collagen morphogenesis, Nature, Vol. 290, No. 5803, pp. 249-51, Mar 19, 1981. eng
[30] A. K. Harris, P. Wild, D. Stopak, Silicone rubber substrata: a new wrinkle in the study of cell locomotion, Science, Vol. 208, No. 4440, pp. 177-9, Apr 11, 1980. eng
[31] C. X. Li, N. P. Talele, S. Boo, A. Koehler, E. Knee-Walden, J. L. Balestrini, P. Speight, A. Kapus, B. Hinz, MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells, Nat Mater, Vol. 16, No. 3, pp. 379-389, Mar, 2017. eng
[32] A. Zhong, Z. Mirzaei, C. A. Simmons, The Roles of Matrix Stiffness and ß-Catenin Signaling in Endothelial-to-Mesenchymal Transition of Aortic Valve Endothelial Cells, Cardiovasc Eng Technol, Vol. 9, No. 2, pp. 158-167, Jun, 2018. eng
[33] T. Tzvetkova-Chevolleau, A. Stéphanou, D. Fuard, J. Ohayon, P. Schiavone, P. Tracqui, The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure, Biomaterials, Vol. 29, No. 10, pp. 1541-51, Apr, 2008. eng
[34] Y. Andriani, J. M. Chua, B. Y. Chua, I. Y. Phang, N. Shyh-Chang, W. S. Tan, Polyurethane acrylates as effective substrates for sustained in vitro culture of human myotubes, Acta Biomater, Vol. 57, pp. 115-126, Jul 15, 2017. eng
[35] L. Cacopardo, N. Guazzelli, R. Nossa, G. Mattei, A. Ahluwalia, Engineering hydrogel viscoelasticity, J Mech Behav Biomed Mater, Vol. 89, pp. 162-167, Jan, 2019. eng
[36] E. Migliorini, J. Ban, G. Grenci, L. Andolfi, A. Pozzato, M. Tormen, V. Torre, M. Lazzarino, Nanomechanics controls neuronal precursors adhesion and differentiation, Biotechnol Bioeng, Vol. 110, No. 8, pp. 2301-10, Aug, 2013. eng
[37] C. E. Kandow, P. C. Georges, P. A. Janmey, K. A. Beningo, Polyacrylamide hydrogels for cell mechanics: steps toward optimization and alternative uses, Methods Cell Biol, Vol. 83, pp. 29-46, 2007. eng
[38] T. Okamoto, Y. Takagi, E. Kawamoto, E. J. Park, H. Usuda, K. Wada, M. Shimaoka, Reduced substrate stiffness promotes M2-like macrophage activation and enhances peroxisome proliferator-activated receptor γ expression, Exp Cell Res, Vol. 367, No. 2, pp. 264-273, Jun 15, 2018. eng
[39] P. Zarrintaj, S. Manouchehri, Z. Ahmadi, M. R. Saeb, A. M. Urbanska, D. L. Kaplan, M. Mozafari, Agarose-based biomaterials for tissue engineering, Carbohydr Polym, Vol. 187, pp. 66-84, May 1, 2018. eng
[40] A. Bauer, L. Gu, B. Kwee, W. A. Li, M. Dellacherie, A. D. Celiz, D. J. Mooney, Hydrogel substrate stress-relaxation regulates the spreading and proliferation of mouse myoblasts, Acta Biomater, Vol. 62, pp. 82-90, Oct 15, 2017. eng
[41] M. Bao, J. Xie, N. Katoele, X. Hu, B. Wang, A. Piruska, W. T. S. Huck, Cellular Volume and Matrix Stiffness Direct Stem Cell Behavior in a 3D Microniche, ACS Appl Mater Interfaces, Vol. 11, No. 2, pp. 1754-1759, Jan 16, 2019. eng
[42] T. Yeung, P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, P. A. Janmey, Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion, Cell Motil Cytoskeleton, Vol. 60, No. 1, pp. 24-34, Jan, 2005. eng
[43] F. Martino, A. R. Perestrelo, V. Vinarský, S. Pagliari, G. Forte, Cellular Mechanotransduction: From Tension to Function, Front Physiol, Vol. 9, pp. 824, 2018. eng
[44] L. Martinez-Vidal, V. Murdica, C. Venegoni, F. Pederzoli, M. Bandini, A. Necchi, A. Salonia, M. Alfano, Causal contributors to tissue stiffness and clinical relevance in urology, Commun Biol, Vol. 4, No. 1, pp. 1011, Aug 26, 2021. eng
[45] Y. F. I. Setargew, K. Wyllie, R. D. Grant, J. L. Chitty, T. R. Cox, Targeting Lysyl Oxidase Family Meditated Matrix Cross-Linking as an Anti-Stromal Therapy in Solid Tumours, Cancers (Basel), Vol. 13, No. 3, Jan 27, 2021. eng
[46] M. W. Pickup, J. K. Mouw, V. M. Weaver, The extracellular matrix modulates the hallmarks of cancer, EMBO Rep, Vol. 15, No. 12, pp. 1243-53, Dec, 2014. eng
[47] B. Emon, J. Bauer, Y. Jain, B. Jung, T. Saif, Biophysics of Tumor Microenvironment and Cancer Metastasis - A Mini Review, Comput Struct Biotechnol J, Vol. 16, pp. 279-287, 2018. eng
[48] J. Winkler, A. Abisoye-Ogunniyan, K. J. Metcalf, Z. Werb, Concepts of extracellular matrix remodelling in tumour progression and metastasis, Nat Commun, Vol. 11, No. 1, pp. 5120, Oct 9, 2020. eng
[49] V. Poltavets, M. Kochetkova, S. M. Pitson, M. S. Samuel, The Role of the Extracellular Matrix and Its Molecular and Cellular Regulators in Cancer Cell Plasticity, Front Oncol, Vol. 8, pp. 431, 2018. eng
[50] N. M. Anderson, M. C. Simon, The tumor microenvironment, Curr Biol, Vol. 30, No. 16, pp. R921-r925, Aug 17, 2020. eng
[51] T. R. Cox, The matrix in cancer, Nat Rev Cancer, Vol. 21, No. 4, pp. 217-238, Apr, 2021. eng
[52] A. M. Socovich, A. Naba, The cancer matrisome: From comprehensive characterization to biomarker discovery, Semin Cell Dev Biol, Vol. 89, pp. 157-166, May, 2019. eng
[53] K. R. Levental, H. Yu, L. Kass, J. N. Lakins, M. Egeblad, J. T. Erler, S. F. Fong, K. Csiszar, A. Giaccia, W. Weninger, M. Yamauchi, D. L. Gasser, V. M. Weaver, Matrix crosslinking forces tumor progression by enhancing integrin signaling, Cell, Vol. 139, No. 5, pp. 891-906, Nov 25, 2009. eng
[54] C. Ricciardelli, D. L. Russell, M. P. Ween, K. Mayne, S. Suwiwat, S. Byers, V. R. Marshall, W. D. Tilley, D. J. Horsfall, Formation of hyaluronan- and versican-rich pericellular matrix by prostate cancer cells promotes cell motility, J Biol Chem, Vol. 282, No. 14, pp. 10814-25, Apr 6, 2007. eng
[55] W. D. Ni, Z. T. Yang, C. A. Cui, Y. Cui, L. Y. Fang, Y. H. Xuan, Tenascin-C is a potential cancer-associated fibroblasts marker and predicts poor prognosis in prostate cancer, Biochem Biophys Res Commun, Vol. 486, No. 3, pp. 607-612, May 6, 2017. eng
[56] B. F. Gonçalves, S. G. Campos, C. F. Costa, W. R. Scarano, R. M. Góes, S. R. Taboga, Key participants of the tumor microenvironment of the prostate: an approach of the structural dynamic of cellular elements and extracellular matrix components during epithelial-stromal transition, Acta Histochem, Vol. 117, No. 1, pp. 4-13, Jan, 2015. eng
[57] M. P. Caley, H. King, N. Shah, K. Wang, M. Rodriguez-Teja, J. H. Gronau, J. Waxman, J. Sturge, Tumor-associated Endo180 requires stromal-derived LOX to promote metastatic prostate cancer cell migration on human ECM surfaces, Clin Exp Metastasis, Vol. 33, No. 2, pp. 151-65, Feb, 2016. eng
[58] Z. Liu, L. Wang, H. Xu, Q. Du, L. Li, L. Wang, E. S. Zhang, G. Chen, Y. Wang, Heterogeneous Responses to Mechanical Force of Prostate Cancer Cells Inducing Different Metastasis Patterns, Adv Sci (Weinh), Vol. 7, No. 15, pp. 1903583, Aug, 2020. eng
[59] K. M. Aw Yong, Y. Sun, S. D. Merajver, J. Fu, Mechanotransduction-Induced Reversible Phenotypic Switching in Prostate Cancer Cells, Biophys J, Vol. 112, No. 6, pp. 1236-1245, Mar 28, 2017. eng
[60] J. L. Eisenberg, A. Safi, X. Wei, H. D. Espinosa, G. S. Budinger, D. Takawira, S. B. Hopkinson, J. C. Jones, Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells, Res Rep Biol, Vol. 2011, No. 2, pp. 1-12, Jan, 2011. eng
[61] A. Petersen, P. Joly, C. Bergmann, G. Korus, G. N. Duda, The impact of substrate stiffness and mechanical loading on fibroblast-induced scaffold remodeling, Tissue Eng Part A, Vol. 18, No. 17-18, pp. 1804-17, Sep, 2012. eng
[62] O. V. Sazonova, K. L. Lee, B. C. Isenberg, C. B. Rich, M. A. Nugent, J. Y. Wong, Cell-cell interactions mediate the response of vascular smooth muscle cells to substrate stiffness, Biophys J, Vol. 101, No. 3, pp. 622-30, Aug 3, 2011. eng
[63] Z. Goli-Malekabadi, M. Tafazzoli-Shadpour, A. Tamayol, E. Seyedjafari, Time dependency of morphological remodeling of endothelial cells in response to substrate stiffness, Bioimpacts, Vol. 7, No. 1, pp. 41-47, 2017. eng
[64] X. Tang, Y. Zhang, J. Mao, Y. Wang, Z. Zhang, Z. Wang, H. Yang, Effects of substrate stiffness on the viscoelasticity and migration of prostate cancer cells examined by atomic force microscopy, Beilstein Journal of Nanotechnology, Vol. 13, pp. 560-569, //, 2022.
[65] A. J. McKenzie, S. R. Hicks, K. V. Svec, H. Naughton, Z. L. Edmunds, A. K. Howe, The mechanical microenvironment regulates ovarian cancer cell morphology, migration, and spheroid disaggregation, Scientific Reports, Vol. 8, No. 1, pp. 7228, 2018/05/08, 2018.
[66] Y. Fan, Q. Sun, X. Li, J. Feng, Z. Ao, X. Li, J. Wang, Substrate Stiffness Modulates the Growth, Phenotype, and Chemoresistance of Ovarian Cancer Cells, Frontiers in Cell and Developmental Biology, Vol. 9, 2021-August-24, 2021. English
[67] L. Chen, G. Zhao, M. De Menna, S. Coppola, N. Landman, S. Schieven, A. Groenewoud, G. N. Thalmann, T. Schmidt, J. de Vries, Mechano-signaling of prostate tumor initiating cells facilitates their tropism to stiff metastatic niche, bioRxiv, pp. 2023.08. 28.553410, 2023.
[68] V. Gkretsi, T. Stylianopoulos, Cell adhesion and matrix stiffness: coordinating cancer cell invasion and metastasis, Frontiers in oncology, Vol. 8, pp. 145, 2018.
[69] L. E. Lamb, J. C. Zarif, C. K. Miranti, The androgen receptor induces integrin α6β1 to promote prostate tumor cell survival via NF-κB and Bcl-xL Independently of PI3K signaling, Cancer research, Vol. 71, No. 7, pp. 2739-2749, 2011.
[70] R. Ata, C. N. Antonescu, Integrins and cell metabolism: an intimate relationship impacting cancer, International journal of molecular sciences, Vol. 18, No. 1, pp. 189, 2017.
[71] A. K. Simi, M.-F. Pang, C. M. Nelson, Extracellular matrix stiffness exists in a feedback loop that drives tumor progression, Biomechanics in Oncology, pp. 57-67, 2018.
[72] A. N. Gargalionis, K. A. Papavassiliou, A. G. Papavassiliou, Targeting the YAP/TAZ mechanotransducers in solid tumour therapeutics, Journal of Cellular and Molecular Medicine, Vol. 27, No. 13, pp. 1911, 2023.
[73] S. A. Mosaddad, Y. Salari, S. Amookhteh, R. S. Soufdoost, A. Seifalian, S. Bonakdar, F. Safaeinejad, M. M. Moghaddam, H. Tebyanian, Response to mechanical cues by interplay of YAP/TAZ transcription factors and key mechanical checkpoints of the cell: a comprehensive review, Cell Physiol Biochem, Vol. 55, No. 1, pp. 33-60, 2021.
[74] G. Rubí-Sans, A. Nyga, M. A. Mateos-Timoneda, E. Engel, Substrate stiffness-dependent activation of Hippo pathway in cancer associated fibroblasts, Biomaterials Advances, Vol. 166, pp. 214061, 2025.
[75] C. W. Molter, E. F. Muszynski, Y. Tao, T. Trivedi, A. Clouvel, A. J. Ehrlicher, Prostate cancer cells of increasing metastatic potential exhibit diverse contractile forces, cell stiffness, and motility in a microenvironment stiffness-dependent manner, Frontiers in Cell and Developmental Biology, Vol. 10, pp. 932510, 2022.
[76] H. Y. Murad, H. Yu, D. Luo, E. P. Bortz, G. M. Halliburton, A. B. Sholl, D. B. Khismatullin, Mechanochemical disruption suppresses metastatic phenotype and pushes prostate cancer cells toward apoptosis, Molecular Cancer Research, Vol. 17, No. 5, pp. 1087-1101, 2019.
[77] W. Pan, Z. Zhang, H. Kimball, F. Qu, K. Berlind, K. H. Stopsack, G.-S. M. Lee, T. K. Choueiri, P. W. Kantoff, Abiraterone acetate induces CREB1 phosphorylation and enhances the function of the CBP-p300 complex, leading to resistance in prostate cancer cells, Clinical Cancer Research, Vol. 27, No. 7, pp. 2087-2099, 2021.
[78] M. P. Edlind, A. C. Hsieh, PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance, Asian journal of andrology, Vol. 16, No. 3, pp. 378-386, 2014.
[79] J. B. Wu, L. W. Chung, The PI3K-mTOR Pathway in Prostate Cancer: Biological Significance and Therapeutic Opportunities, PI3K-mTOR in Cancer and Cancer Therapy, pp. 263-289, 2016.
[80] R. Wang, Z. Qu, Y. Lv, L. Yao, Y. Qian, X. Zhang, L. Xiang, Important Roles of PI3K/AKT Signaling Pathway and Relevant Inhibitors in Prostate Cancer Progression, Cancer Medicine, Vol. 13, No. 21, pp. e70354, 2024.
[81] S. Heller, T. Sugawara, E. Nevedomskaya, S. J. Baumgart, H. Nguyen, E. Corey, A. Böhme, O. von Ahsen, O. Politz, B. Haendler, Abstract B065: Combining the androgen receptor inhibitor darolutamide with PI3K/AKT/mTOR pathway inhibitors has superior efficacy in preclinical models of prostate cancer, Cancer Research, Vol. 83, No. 11_Supplement, pp. B065-B065, 2023.
[82] S. Li, F. La Manna, P. Chouvardas, G. Thalmann, M. Kruithof-de Julio, Abstract B007: New generation mTOR blocker sensitizes prostate cancer models to AR-targeting therapy, Cancer Research, Vol. 83, No. 11_Supplement, pp. B007-B007, 2023.