[1] Z. Liu, K. Zhou, L. Wang, T. Jiang, H. Dai, Dynamical stability of cantilevered pipe conveying fluid in the presence of linear dynamic vibration absorber, Journal of Computational Applied Mechanics, Vol. 50, No. 1, pp. 182-190, 2019.
[2] F. Freddi, C. Galasso, G. Cremen, A. Dall’Asta, L. Di Sarno, A. Giaralis, F. Gutiérrez-Urzúa, C. Málaga-Chuquitaype, S. A. Mitoulis, C. Petrone, Innovations in earthquake risk reduction for resilience: Recent advances and challenges, International Journal of Disaster Risk Reduction, Vol. 60, pp. 102267, 2021.
[3] T. E. Saaed, G. Nikolakopoulos, J.-E. Jonasson, H. Hedlund, A state-of-the-art review of structural control systems, Journal of Vibration and Control, Vol. 21, No. 5, pp. 919-937, 2015.
[4] X. Song, J. Liu, M. Xia, Advanced Vibration-Based Fault Diagnosis and Vibration Control Methods, 18, MDPI, 2023, pp. 7704.
[5] M. Jafari, M. Mohammadimehr, Forced vibration control of Timoshenko’s micro sandwich beam with CNT/GPL/CNR reinforced composites integrated by piezoelectric on Kerr’s elastic foundation using MCST, Journal of Computational Applied Mechanics, Vol. 56, No. 1, pp. 15-42, 2025.
[6] A. M. Zenkour, H. D. El-Shahrany, Forced vibration of a magnetoelastic laminated composite beam on Pasternak’s foundation, Journal of Computational Applied Mechanics, Vol. 52, No. 3, pp. 478-497, 2021.
[7] H. Frahm, Device for damping vibrations of bodies, 1911.
[8] J. Ormondroyd, J. P. Den Hartog, The theory of the dynamic vibration absorber, Journal of Fluids Engineering, Vol. 49, No. 2, 1928.
[9] J. P. Den Hartog, 1985, Mechanical vibrations, Courier Corporation,
[10] R. E. D. Bishop, D. B. Welbourn, The problem of the dynamic vibration absorber, Engineering, London, Vol. 174, pp. 769, 1952.
[11] J. E. Brock, A note on the damped vibration absorber, 1946.
[12] W.-H. L. M. R. Roohollah Talebitooti, Concurrent energy harvesting and vibration suppression utilizing PZT-based dynamic vibration absorber, Archive of Applied Mechanics, pp. 1-20, 2022.
[13] S. Mehdi Mohammadimehr Saeid, Vibration analysis of rotating fully-bonded and delaminated sandwich beam with CNTRC face sheets and AL-foam flexible core in thermal and moisture environments, Mechanics Based Design of Structures and Machines, Vol. 48, No. 5, pp. 584-614, 2020.
[14] F. L. M. B. M. V. S. M. Antonio Argentino, SMA-based adaptive tuned mass dampers: Analysis and comparison, Mechanical Systems and Signal Processing, Vol. 186, pp. 109883, 2023.
[15] N. Duy Chinh, Vibration control of a rotating shaft by passive mass-spring-disc dynamic vibration absorber, Archive of Mechanical Engineering, Vol. 67, No. 3, pp. 279-297, 2020.
[16] M. M. M. Mohammadimehr, Stability and free vibration analyses of double-bonded micro composite sandwich cylindrical shells conveying fluid flow, Applied Mathematical Modelling, Vol. 47, pp. 685-709, 2017.
[17] B. R. N. M. M. S Javad Atifeh, Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-mechanical loadings, Journal of Vibration and Control, Vol. 24, No. 15, pp. 3471-3486, 2018.
[18] R. R. M. Mohammadimehr, Bending and vibration analyses of a rotating sandwich cylindrical shell considering nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields, Applied Mathematics and Mechanics, Vol. 39, No. 2, pp. 219-240, 2018.
[19] M. M. A. A. Monajemi, Stability analysis of a spinning soft-core sandwich beam with CNTs reinforced metal matrix nanocomposite skins subjected to residual stress, Mechanics Based Design of Structures and Machines, Vol. 52, No. 1, pp. 338-358, 2024.
[20] S.-B. Choi, Y.-M. Han, 2016, Piezoelectric actuators: control applications of smart materials, CRC Press,
[21] Z. Deng, M. J. Dapino, Review of magnetostrictive materials for structural vibration control, Smart Materials and Structures, Vol. 27, No. 11, pp. 113001, 2018.
[22] M. S. K. Jacob, Damping of Smart Systems by Shape Memory Alloys (SMAs).
[23] M. Arabzadeh-Ziari, M. Mohammadimehr, E. Arabzadeh-Ziari, M. Asgari, Deflection, buckling and vibration analyses for a sandwich nanocomposite structure with foam core reinforced with GPLs and SMAs based on TSDBT, Journal of Computational Applied Mechanics, Vol. 55, No. 2, pp. 289-321, 2024.
[24] Z. K. Maraghi, S. A. Mirhaj, Ö. Civalek, Instability and vibration behaviour of sandwich plate on Kerr foundation, Engineering Structures, Vol. 341, pp. 120876, 2025.
[25] M. A. Mohammadimehr, A. Loghman, S. Amir, M. Mohammadimehr, E. Arshid, Ö. Civalek, Magneto-electro vibration analysis of a moderately thick double-curved sandwich panel with porous core and GPLRC using FSDT, Journal of Computational Applied Mechanics, Vol. 56, No. 3, pp. 673-693, 2025.
[26] F. Ghasemi, A. Salari, E. Salari, A. Rastgoo, Machine learning-assisted investigation on nonlinear vibration analysis of bio-inspired auxetic tubes, International Journal of Structural Integrity, 2025.
[27] H. Ezzati, S. Pashalou, A. Rastgoo, F. Ebrahimi, Vibration analysis of multilayer graphene origami-enabled metamaterial plates, Acta Mechanica, Vol. 235, No. 12, pp. 7623-7640, 2024.
[28] E. Haghparast, A. G. Arani, A. H. S. Arani, Vibration of axially moving sandwich plate with honeycomb core and nanocomposite face sheets, Steel and Composite Structures, Vol. 55, No. 5, pp. 433, 2025.
[29] S. Givi, A. Ghorbanpour Arani, Z. Khoddami Maraghi, E. Arshid, Free vibration and supersonic flutter analyses of a sandwich cylindrical shell with CNT-reinforced honeycomb core integrated with piezoelectric layers, Mechanics Based Design of Structures and Machines, Vol. 53, No. 5, pp. 3225-3253, 2025.
[30] W. J. Carter, F. C. Liu, Steady-state behavior of nonlinear dynamic vibration absorber, 1961.
[31] A. G. Thompson, Optimum tuning and damping of a dynamic vibration absorber applied to a force excited and damped primary system, Journal of Sound and Vibration, Vol. 77, No. 3, pp. 403-415, 1981.
[32] O. Nishihara, T. Asami, Closed-form solutions to the exact optimizations of dynamic vibration absorbers (minimizations of the maximum amplitude magnification factors), J. Vib. Acoust., Vol. 124, No. 4, pp. 576-582, 2002.
[33] T. Asami, O. Nishihara, H 2 optimization of the three-element type dynamic vibration absorbers, J. Vib. Acoust., Vol. 124, No. 4, pp. 583-592, 2002.
[34] T. Asami, O. Nishihara, A. M. Baz, Analytical solutions to H∞ and H 2 optimization of dynamic vibration absorbers attached to damped linear systems, J. Vib. Acoust., Vol. 124, No. 2, pp. 284-295, 2002.
[35] H. Yamaguchi, Damping of transient vibration by a dynamic absorber, Trans. Jpn. Soc. Mech. Eng., Vol. 54, No. 499, pp. 561, 1988.
[36] O. Nishihara, H. Matsuhisa, others, Design of a dynamic vibration absorber for minimization of maximum amplitude magnification factor (derivation of algebraic exact solution), Japanese Society of Mechanical Engineering, Vol. 63, pp. 3438-3445, 1997.
[37] F. Sadek, B. Mohraz, A. W. Taylor, R. M. Chung, A method of estimating the parameters of tuned mass dampers for seismic applications, Earthquake Engineering \& Structural Dynamics, Vol. 26, No. 6, pp. 617-635, 1997.
[38] H.-C. Tsai, G.-C. Lin, Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped systems, Earthquake engineering \& structural dynamics, Vol. 22, No. 11, pp. 957-973, 1993.
[39] J. H. Ruoyu Zhang, Hybrid Analytical Optimal Approach and Comparative Analyses for Tuned Viscous Mass Damper with Negative Stiffness (TVMDNS), Journal of Vibration Engineering \& Technologies, pp. 1-18, 2024.
[40] T. Igusa, K. Xu, Vibration control using multiple tuned mass dampers, Journal of sound and vibration, Vol. 175, No. 4, pp. 491-503, 1994.
[41] A. J. Clark, others, Multiple passive tuned mass dampers for reducing earthquake induced building motion, in Proceeding of, 779-784.
[42] H. Anthony Frederick, Multi-degree of freedom passive and active vibration absorbers for the control of structural vibration, Thesis, 2003.
[43] J. C. S. J. J. Yong, Geometrical design method of multi-degree-of-freedom dynamic vibration absorbers, Journal of Sound and Vibration, Vol. 303, No. 1-2, pp. 343-356, 2007.
[44] D. G. T. Y. Q. W. Y. S. Jinsong Zhou, Multi-degree of Freedom Dynamic Vibration Absorber of the Carbody of High-Speed Trains, in Proceeding of, 3-7.
[45] D. G. Y. J. Y. S. Jinsong Zhou, Study on multi-degree of freedom dynamic vibration absorber of the car body of high-speed trains, Mechanical Sciences, Vol. 13, No. 1, pp. 239-256, 2022.
[46] R. B. B. A. K. W. A. K. S. Rj Alkhoury, Ride dynamic analysis of a hybrid discrete and continuous vehicle model, pp. 2008.
[47] F. Mariano, Optimal parameters and characteristics of a three degree of freedom dynamic vibration absorber, 2012.
[48] S.-P. Y. G.-S. G. Y.-J. S. Lin Wang, Nonlinear dynamical analysis and parameters optimization of four semi-active on-off dynamic vibration absorbers, Journal of Vibration and Control, Vol. 19, No. 1, pp. 143-160, 2013.
[49] T. Szolc, Medium frequency dynamic investigation of the railway wheelset-track system using a discrete-continuous model, Archive of Applied Mechanics, Vol. 68, pp. 30-45, 1998.
[50] A. F. B. Noori, Optimum design of dynamic vibration absorbers for a beam, based on H∞ and H 2 Optimization, Archive of Applied Mechanics, Vol. 83, pp. 1773-1787, 2013.
[51] W. Chia-Man Chang Yi-Ren, Elastic beam with nonlinear suspension and a dynamic vibration absorber at the free end, Transactions of the Canadian Society for Mechanical Engineering, Vol. 38, No. 1, pp. 107-137, 2014.
[52] H. D. H. P. P Frank Pai, Acoustic multi-stopband metamaterial plates design for broadband elastic wave absorption and vibration suppression, International journal of mechanical sciences, Vol. 103, pp. 104-114, 2015.
[53] C. Tianxing Wu Rong, Vibration control of base system using distributed dynamic vibration absorbers, Journal of Vibration and Control, Vol. 20, No. 10, pp. 1589-1600, 2014.
[54] L. C. C. Y. Deyu Li, Dynamic vibration absorbers for vibration control within a frequency band, Journal of Sound and Vibration, Vol. 330, No. 8, pp. 1582-1598, 2011.
[55] C. A. C. C. Gregorio Toscano Pulido, Multiobjective structural optimization using a microgenetic algorithm, Structural and Multidisciplinary Optimization, Vol. 30, pp. 388-403, 2005.
[56] A. C. G. L. J. H. G. Z. Zheng-Dong Ma, Design optimization of a runflat structure based on multi-objective genetic algorithm, Structural and Multidisciplinary Optimization, Vol. 51, pp. 1363-1371, 2015.
[57] Y. X. J. B. N. S. Zhaoqing Chen, Hybrid analytical H-norm optimization approach for dynamic vibration absorbers, International Journal of Mechanical Sciences, Vol. 264, pp. 108796, 2024.
[58] R. Gaetan Kerschen Ghislain, $H_\infty$ optimization of multiple tuned mass dampers for multimodal vibration control, Computers \& Structures, Vol. 248, pp. 106485, 2021.
[59] A. Toshihiko, Calculation of the $H_\infty$ optimized design of a single-mass dynamic vibration absorber attached to a damped primary system, Mechanical Engineering Journal, Vol. 7, No. 5, pp. 20-00250, 2020.
[60] K. Y. T. A. Yoshito Mizukawa, Optimal design of a hysteretically damped dynamic vibration absorber, Mechanical Engineering Journal, Vol. 7, No. 2, pp. 19-00482, 2020.
[61] A. K.-J. Marcial Baduidana, Parameters optimization of three-element dynamic vibration absorber with inerter and grounded stiffness, Journal of Vibration and Control, Vol. 30, No. 7-8, pp. 1548-1565, 2024.
[62] J. C. J. M. A. A. F.-H. M. A.-M. E. B. Jg Mendoza Larios, A novel high-performance passive non-traditional inerter-based dynamic vibration absorber, Journal of Sound and Vibration, Vol. 485, pp. 115583, 2020.