[1] M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Optimization with PDE Constraints, in: Eds., pp. xii+270, 2009.
[2] T. Tindano, M. Soma, S. Tao, S. Sawadogo, OPTIMAL CONTROL OF A NONLINEAR ELLIPTICAL EVOLUTION PROBLEM WITH MISSING DATA, Advances in Differential Equations and Control Processes, Vol. 30, No. 2, pp. 135-150, 04/24, 2023.
[3] S. Garg, N. Rani, OPTIMIZING MAINTENANCE STRATEGIES OF COIL SHOP: A DIFFERENTIAL EQUATION APPROACH, Advances in Differential Equations and Control Processes, Vol. 31, No. 4, pp. 487-509, 08/27, 2024.
[4] D. Zambelongo, M. Kere, S. Sawadogo, OPTIMAL HARVESTING STRATEGY FOR PREY-PREDATOR MODEL WITH FISHING EFFORT AS A TIME VARIABLE, Advances in Differential Equations and Control Processes, Vol. 31, No. 3, pp. 417–438, 07/22, 2024.
[5] W. N. A. W. Ahmad, S. F. Sufahani, M. A. H. Mohamad, N. Z. Abidin, OPTIMIZING ROYALTY PAYMENTS FOR MAXIMUM ECONOMIC BENEFIT: A CASE STUDY UTILIZING MODIFIED SHOOTING AND DISCRETIZATION METHODS, Advances in Differential Equations and Control Processes, Vol. 31, No. 4, pp. 563-581, 10/16, 2024.
[6] M. Itik, M. U. Salamci, S. P. Banks, Optimal control of drug therapy in cancer treatment, Nonlinear Analysis: Theory, Methods & Applications, Vol. 71, No. 12, pp. e1473-e1486, 2009/12/15/, 2009.
[7] A. Mang, A. Gholami, C. Davatzikos, G. Biros, PDE-constrained optimization in medical image analysis, Optimization and Engineering, Vol. 19, No. 3, pp. 765-812, 2018/09/01, 2018.
[8] A. Perec, A. Radomska-Zalas, A. Fajdek-Bieda, F. Pude, PROCESS OPTIMIZATION BY APPLYING THE RESPONSE SURFACE METHODOLOGY (RSM) TO THE ABRASIVE SUSPENSION WATER JET CUTTING OF PHENOLIC COMPOSITES, 2023, pp. 15, 2023-12-16, 2023.
[9] Y. Shen, N. Yan, Z. Zhou, Convergence and quasi-optimality of an adaptive finite element method for elliptic Robin boundary control problem, Journal of Computational and Applied Mathematics, Vol. 356, pp. 1-21, 2019/08/15/, 2019.
[10] Y. Shen, W. Gong, N. Yan, Convergence of adaptive nonconforming finite element method for Stokes optimal control problems, Journal of Computational and Applied Mathematics, Vol. 412, pp. 114336, 2022/10/01/, 2022.
[11] W. N. A. W. Ahmad, S. F. Sufahani, M. A. H. Mohamad, M. S. Rusiman, M. Z. M. Maarof, M. A. l. Kamarudin, NON-CLASSICAL OPTIMAL CONTROL PROBLEM: A CASE STUDY FOR CONTINUOUS APPROXIMATION OF FOUR-STEPWISE FUNCTION, Advances in Differential Equations and Control Processes, Vol. 30, No. 4, pp. 309-321, 09/21, 2023.
[12] A. T. Ramazanova, NECESSARY CONDITIONS FOR OPTIMALITY IN ONE NONSMOOTH OPTIMAL CONTROL PROBLEM FOR GOURSAT-DARBOUX SYSTEMS, Advances in Differential Equations and Control Processes, Vol. 31, No. 4, pp. 673-681, 11/08, 2024.
[13] W. N. A. W. Ahmad, S. F. Sufahani, M. A. H. Mohamad, R. Ramli, MODERNIZING CLASSICAL OPTIMAL CONTROL: HARNESSING DIRECT AND INDIRECT OPTIMIZATION, Advances in Differential Equations and Control Processes, Vol. 31, No. 4, pp. 609-625, 10/25, 2024.
[14] Y. Wu, G.-Q. Feng, Variational principle for an incompressible flow, Thermal Science, Vol. 27, No. 3 Part A, pp. 2039-2047, 2023.
[15] K.-L. WANG, C.-H. HE, A REMARK ON WANG’S FRACTAL VARIATIONAL PRINCIPLE, Fractals, Vol. 27, No. 08, pp. 1950134, 2019.
[16] X.-Q. Cao, M.-G. Zhou, S.-H. Xie, Y.-N. Guo, K.-C. Peng, New Variational Principles for Two Kinds of Nonlinear Partial Differential Equation in Shallow Water, Journal of Applied and Computational Mechanics, Vol. 10, No. 2, pp. 406-412, 2024.
[17] X.-Q. CAO, S.-C. HOU, Y.-N. GUO, C.-Z. ZHANG, K.-C. PENG, VARIATIONAL PRINCIPLE FOR (2 + 1)-DIMENSIONAL BROER–KAUP EQUATIONS WITH FRACTAL DERIVATIVES, Fractals, Vol. 28, No. 07, pp. 2050107, 2020.
[18] H. Ma, Variational principle for a generalized Rabinowitsch lubrication, Thermal Science, Vol. 27, pp. 71-71, 01/01, 2022.
[19] Y. Shao, Y. Cui, Mathematical approach for rapid determination of pull-in displacement in MEMS devices, Frontiers in Physics, Vol. Volume 13 - 2025, 2025-April-07, 2025. English
[20] J.-H. He, Q. Bai, Y.-C. Luo, D. Kuangaliyeva, G. Ellis, Y. Yessetov, P. Skrzypacz, Modeling and numerical analysis for MEMS graphene resonator, Frontiers in Physics, Vol. Volume 13 - 2025, 2025-April-25, 2025. English
[21] Q. Tul Ain, T. Sathiyaraj, S. Karim, M. Nadeem, P. Kandege Mwanakatwe, ABC Fractional Derivative for the Alcohol Drinking Model using Two-Scale Fractal Dimension, Complexity, Vol. 2022, No. 1, pp. 8531858, 2022.
[22] Y. ZHANG, N. ANJUM, D. TIAN, A. A. ALSOLAMI, FAST AND ACCURATE POPULATION FORECASTING WITH TWO-SCALE FRACTAL POPULATION DYNAMICS AND ITS APPLICATION TO POPULATION ECONOMICS, Fractals, Vol. 32, No. 05, pp. 2450082, 2024.
[23] C.-H. He, C. Liu, FRACTAL DIMENSIONS OF A POROUS CONCRETE AND ITS EFFECT ON THE CONCRETE’S STRENGTH, 2023, pp. 14, 2023-04-10, 2023.
[24] C.-H. He, H.-W. Liu, C. Liu, A FRACTAL-BASED APPROACH TO THE MECHANICAL PROPERTIES OF RECYCLED AGGREGATE CONCRETES, 2024, pp. 14, 2024-07-31, 2024.
[25] H. Liu, Y. Wang, C. Zhu, Y. Wu, C. Liu, C. He, Y. Yao, Y. Wang, G. Bai, Design of 3D printed concrete masonry for wall structures: Mechanical behavior and strength calculation methods under various loads, Engineering Structures, Vol. 325, pp. 119374, 2025/02/15/, 2025.
[26] C.-H. HE, C. LIU, A MODIFIED FREQUENCY–AMPLITUDE FORMULATION FOR FRACTAL VIBRATION SYSTEMS, Fractals, Vol. 30, No. 03, pp. 2250046, 2022.
[27] Y.-P. LIU, C.-H. HE, K. A. GEPREEL, J.-H. HE, CLOVER-INSPIRED FRACTAL ARCHITECTURES: INNOVATIONS IN FLEXIBLE FOLDING SKINS FOR SUSTAINABLE BUILDINGS, Fractals, Vol. 0, No. 0, pp. 2550041.
[28] X.-X. Li, Y.-C. Luo, A. A. Alsolami, J.-H. He, Elucidating the fractal nature of the porosity of nanofiber members in the electrospinning process, FRACTALS (fractals), Vol. 32, No. 06, pp. 1-9, 2024.
[29] Y.-P. Liu, J.-H. He, M. H. Mahmud, Leveraging Lotus Seeds’ Distribution Patterns For Fractal Super-Rope Optimization, FRACTALS (fractals), Vol. 33, No. 03, pp. 1-11, 2025.
[30] J.-J. Liu, Two-dimensional heat transfer with memory property in a fractal space, Thermal Science, Vol. 28, No. 3 Part A, pp. 1993-1998, 2024.
[31] J.-F. Lu, L. Ma, Analysis of a fractal modification of attachment oscillator, Thermal Science, Vol. 28, No. 3 Part A, pp. 2153-2163, 2024.
[32] L. Zhang, K. A. Gepreel, J. Yu, He’s frequency formulation for fractal-fractional nonlinear oscillators: a comprehensive analysis, Frontiers in Physics, Vol. Volume 13 - 2025, 2025-March-20, 2025. English
[33] D. TIAN, Z. HUANG, J. XIANG, A MODELING AND EXPERIMENTAL ANALYSIS OF FRACTAL GEOMETRIC POTENTIAL MEMS IN THE CONTEXT OF THE DEVELOPMENT OF 6G AND BEYOND, Fractals, Vol. 32, No. 06, pp. 2450124, 2024.
[34] J.-H. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons & Fractals, Vol. 19, pp. 847-851, 03/01, 2004.
[35] J. Sun, Fractal solitary waves of the (3+ 1)-dimensional fractal modified KdV-Zakharov-Kuznetsov, Thermal Science, Vol. 28, No. 3 Part A, pp. 1967-1974, 2024.
[36] C.-H. He, C. Liu, Variational principle for singular waves, Chaos, Solitons & Fractals, Vol. 172, pp. 113566, 07/01, 2023.
[37] C. Zhou, J. Hong, S. Lai, Sufficient conditions of blowup to a shallow water wave equation, Results in Applied Mathematics, Vol. 23, pp. 100487, 2024/08/01/, 2024.
[38] Y. WANG, W. HOU, K. GEPREEL, H. LI, A FRACTAL-FRACTIONAL TSUNAMI MODEL CONSIDERING NEAR-SHORE FRACTAL BOUNDARY, Fractals, Vol. 32, No. 02, pp. 2450040, 2024.
[39] Y. WANG, Q. DENG, FRACTAL DERIVATIVE MODEL FOR TSUNAMI TRAVELING, Fractals, Vol. 27, No. 02, pp. 1950017, 2019.
[40] F.-Y. Wang, J.-S. Sun, Solitary wave solutions of the Navier-Stokes equations by He's variational method, Thermal Science, Vol. 28, No. 3 Part A, pp. 1959-1966, 2024.
[41] C.-H. Shang, H.-A. Yi, Solitary wave solution for the non-linear bending wave equation based on He’s variational method, Thermal Science, Vol. 28, No. 3 Part A, pp. 1983-1991, 2024.
[42] X.-Q. Cao, S.-H. Xie, H.-Z. Leng, W.-L. Tian, J.-L. Yao, Generalized variational principles for the modified Benjamin-Bona-Mahony equation in the fractal space, Thermal Science, Vol. 28, No. 3 Part A, pp. 2341-2349, 2024.
[43] C.-H. He, A variational principle for a fractal nano/microelectromechanical (N/MEMS) system, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 33, No. 1, pp. 351-359, 2022.