Effects of infill parameter variations on mechanical properties in 3D printed structures: comparative study with fem analysis

Document Type : Research Paper

Authors

1 Transilvania University of Brasov, B-dul Eroilor 29, Brasov, 500036, Romania

2 Institute of Solid Mechanics of Romanian Academy, Str. Constantin Mille no. 15, 030167 Bucharest, Romania

3 Dept of Mathematics and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania

4 Academy of Romanian Scientists, Ilfov Street 3, Bucharest, 050045, Romania

5 Faculty of Mechanical and Systems Engineering, Esslingen University of Applied Sciences, 73728 Esslingen, Germany

Abstract

This paper investigates the mechanical behavior of 3D-printed Polyethylene Terephthalate Glycol (PETG) and Poly Lactic Acid (PLA). This study aims to provide information on how the mechanical properties of 3D-printed PETG and 3D-printed PLA are affected by the in-fill parameter (printed layer density). Different infill parameters (hereafter named layer density or density) and ply orientation (filament/fiber orientation) are used for obtaining PETG and PLA samples. Values of mechanical properties were recorded at bending tests on specimens with different densities, namely 10%, 15% and 20%, at angles of 0° and 45°, aiming to assess the material's quality about its properties and applications. PETG and PLA exhibited elastoplastic behavior during bending tests. Obtained results indicate that samples made with PLA exhibit superior mechanical properties compared to those made with PETG. The samples bending tests are validated with FEM analysis. PETG-based samples demonstrate higher resilience and elongation at break values, indicating greater flexibility and resistance to deformation. In contrast, PLA-based samples display more brittle characteristics, with elongation values at failure significantly lower by one order of magnitude.

Keywords

Main Subjects

[1]          A. Chadha, M. I. Ul Haq, A. Raina, R. R. Singh, N. B. Penumarti, M. S. Bishnoi, Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts, World Journal of Engineering, Vol. 16, No. 4, pp. 550-559, 2019.
[2]          A. Kichloo, A. Raina, M. I. Ul Haq, M. Wani, Impact of Carbon Fiber Reinforcement on Mechanical and Tribological Behavior of 3D-Printed Polyethylene Terephthalate Glycol Polymer Composites—An Experimental Investigation, Journal of Materials Engineering and Performance, Vol. 31, 09/24, 2021.
[3]          O. Abdulhameed, A. Al-Ahmari, W. Ameen, S. H. Mian, Additive manufacturing Challenges, trends, and applications, Advances in Mechanical Engineering, Vol. 11, pp. 1–27, 02/24, 2019.
[4]          S. C. Daminabo, S. Goel, S. A. Grammatikos, H. Y. Nezhad, V. K. Thakur, Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems, Materials Today Chemistry, Vol. 16, pp. 100248, 2020/06/01/, 2020.
[5]          K. Krieger, N. Bertollo, M. Dangol, J. Sheridan, M. Lowery, E. o'cearbhaill, Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing, Microsystems & Nanoengineering, Vol. 5, 12/01, 2019.
[6]          I. Solomon, S. Pandian, G. Jagadeesan, A review on the various processing parameters in FDM, Materials Today: Proceedings, Vol. 37, 06/01, 2020.
[7]          A. Dey, N. Yodo, A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics, Journal of Manufacturing and Materials Processing, Vol. 3, pp. 64, 07/29, 2019.
[8]          N. A. S. Mohd Pu'ad, R. H. Abdul Haq, H. Mohd Noh, H. Z. Abdullah, M. I. Idris, T. C. Lee, Review on the fabrication of fused deposition modelling (FDM) composite filament for biomedical applications, Materials Today: Proceedings, Vol. 29, pp. 228-232, 2020/01/01/, 2020.
[9]          S. Bhagia, K. Bornani, R. Agrawal, A. Satlewal, J. Ďurkovič, R. Lagaňa, M. Bhagia, C. G. Yoo, X. Zhao, V. Kunc, Y. Pu, S. Ozcan, A. J. Ragauskas, Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries, Applied Materials Today, Vol. 24, pp. 101078, 2021/09/01/, 2021.
[10]        A. Dey, I. N. Roan Eagle, N. Yodo, A Review on Filament Materials for Fused Filament Fabrication, Journal of Manufacturing and Materials Processing, Vol. 5, No. 3, pp. 69, 2021.
[11]        A. Woern, D. Byard, R. Oakley, M. Fiedler, S. Snabes, J. Pearce, Fused Particle Fabrication 3-D Printing: Recycled Materials’ Optimization and Mechanical Properties, Materials, Vol. 11, pp. 1413, 08/12, 2018.
[12]        S. Rouf, A. Raina, M. I. Ul Haq, N. Naveed, S. Jeganmohan, A. Kichloo, 3D Printed Parts and Mechanical Properties: Influencing Parameters, Sustainability Aspects, Global Market Scenario, Challenges and Applications, Advanced Industrial and Engineering Polymer Research, Vol. 5, 02/01, 2022.
[13]        J. Sedlak, Z. Joska, L. Hrbáčková, E. Jurickova, D. Hrušecká, O. Horak, Determination of Mechanical Properties of Plastic Components Made by 3D Printing, Manufacturing Technology, Vol. 22, 12/09, 2022.
[14]        Z. Joska, L. Andrés, T. Dražan, K. Manas, Z. Pokorný, J. Sedlak, Influence of the shape of the filling on the mechanical properties of samples made by 3D printing, Manufacturing Technology, Vol. 21, 03/22, 2021.
[15]        J. R. Dizon, A. Espera, Q. Chen, R. Advincula, Mechanical Characterization of 3D-Printed Polymers, Additive Manufacturing, Vol. 20, 12/01, 2017.
[16]        S. F. Iftekar, A. Aabid, A. Amir, M. Baig, Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review, Polymers, Vol. 15, pp. 2519, 05/30, 2023.
[17]        A. Garg, A. Bhattacharya, An Insight to the Failure of FDM Parts under Tensile Loading: Finite Element Analysis and Experimental Study, International Journal of Mechanical Sciences, Vol. 120, 12/01, 2016.
[18]        A. Raina, M. I. U. Haq, M. Javaid, S. Rab, A. Haleem, 4D Printing for Automotive Industry Applications, Journal of The Institution of Engineers (India): Series D, Vol. 102, No. 2, pp. 521-529, 2021/12/01, 2021.
[19]        N. Naveed, Investigate the effects of process parameters on material properties and microstructural changes of 3D-printed specimens using fused deposition modelling (FDM), Materials Technology, Vol. 36, pp. 1-14, 05/05, 2020.
[20]        M. I. U. Haq, A. Raina, M. J. Ghazali, M. Javaid, A. Haleem, Potential of 3D Printing Technologies in Developing Applications of Polymeric Nanocomposites,  in: H. Jena, J. K. Katiyar, A. Patnaik, Tribology of Polymer and Polymer Composites for Industry 4.0, Eds., pp. 193-210, Singapore: Springer Singapore, 2021.
[21]        K. Monkova, P. Monka, J. Vanca, M. Zaludek, O. Suba, 2020, Tensile Behaviour of a 3D Printed Lattice Structure,
[22]        Y. Liao, C. Liu, B. Coppola, G. Barra, L. Di Maio, L. Incarnato, K. Lafdi, Effect of Porosity and Crystallinity on 3D Printed PLA Properties, Polymers, Vol. 11, pp. 1487, 09/12, 2019.
[23]        Y. Zhao, Y. Chen, Y. Zhou, Novel mechanical models of tensile strength and elastic property of FDM AM PLA materials: Experimental and theoretical analyses, Materials & Design, Vol. 181, pp. 108089, 2019/11/05/, 2019.
[24]        M. Somireddy, A. Czekanski, Mechanical Characterization of Additively Manufactured Parts by FE Modeling of Mesostructure, Journal of Manufacturing and Materials Processing, Vol. 1, pp. 18, 11/13, 2017.
[25]        L. Warnung, S.-J. Estermann, A. Reisinger, Mechanical Properties of Fused Deposition Modeling (FDM) 3D Printing Materials, RTe Journal, 12/01, 2018.
[26]        M. Amirruddin, K. Ismail, T. C. Yap, Effect of layer thickness and raster angle on the tribological behavior of 3D printed materials, Materials Today: Proceedings, Vol. 48, pp. 1821-1825, 01/01, 2022.
[27]        A. Torrado, D. Roberson, Failure Analysis and Anisotropy Evaluation of 3D-Printed Tensile Test Specimens of Different Geometries and Print Raster Patterns, Journal of Failure Analysis and Prevention, Vol. 16, 01/14, 2016.
[28]        B. H. Lee, J. Abdullah, Z. Khan, Optimization of Rapid Prototyping Parameters for Production of Flexible ABS Object, Journal of Materials Processing Technology, Vol. 169, pp. 54-61, 10/01, 2005.
[29]        A. K. Sood, R. K. Ohdar, S. S. Mahapatra, Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts, Materials and Design, Vol. 31, pp. 287-295, 01/31, 2010.
[30]        M. Moradi, A. Aminzadeh, D. Rahmatabadi, A. Hakimi, Experimental investigation on mechanical characterization of 3D printed PLA produced by fused deposition modeling (FDM), Materials Research Express, Vol. 8, 03/01, 2021.
[31]        J. M. Chacón, M. A. Caminero, E. García-Plaza, P. J. Núñez, Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection, Materials & Design, Vol. 124, pp. 143-157, 2017/06/15/, 2017.
[32]        A. Al-Tamimi, A. Pandžić, E. Kadric, Investigation and Prediction of Tensile, Flexural, and Compressive Properties of Tough PLA Material Using Definitive Screening Design, Polymers, Vol. 15, pp. 4169, 10/20, 2023.
[33]        S. Cicero, M. Sánchez, S. Arrieta, Predicting Critical Loads in Fused Deposition Modeling Graphene-Reinforced PLA Plates Containing Notches Using the Point Method, Polymers, Vol. 15, No. 18, pp. 3797, 2023.
[34]        M. Kováčová, J. Kozakovičová, M. Prochazka, I. Janigová, M. Vysopal, I. Černičková, J. Krajčovič, Z. Spitalsky, Novel Hybrid PETG Composites for 3D Printing, Applied Sciences, Vol. 10, pp. 3062, 04/28, 2020.
[35]        E. Soleyman, M. Aberoumand, D. Rahmatabadi, K. Soltan Mohammadi, I. Ghasemi, M. Baniassadi, K. Abrinia, M. Baghani, Assessment of controllable shape transformation, potential applications, and tensile shape memory properties of 3D printed PETG, Journal of Materials Research and Technology, Vol. 18, 04/01, 2022.
[36]        Ș.-D. Sava, N. Lohan, B. Pricop, P. Mihai, N. Cimpoesu, R.-I. Comăneci, L.-G. Bujoreanu, On the Thermomechanical Behavior of 3D-Printed Specimens of Shape Memory R-PETG, Polymers, Vol. 15, pp. 2378, 05/19, 2023.
[37]        L. Lopes, D. Reis, A. Paula Junior, M. Almeida, Influence of 3D Microstructure Pattern and Infill Density on the Mechanical and Thermal Properties of PET-G Filaments, Polymers, Vol. 15, No. 10, pp. 2268, 2023.
[38]        A. Jreije, S. K. Mutyala, B. G. Urbonavičius, A. Šablinskaitė, N. Keršienė, J. Puišo, Ž. Rutkūnienė, D. Adlienė, Modification of 3D Printable Polymer Filaments for Radiation Shielding Applications, Polymers, Vol. 15, No. 7, pp. 1700, 2023.
[39]        A. Portoaca, R. G. Ripeanu, A. Dinita, M. Tanase, Optimization of 3D Printing Parameters for Enhanced Surface Quality and Wear Resistance, Polymers, Vol. 15, pp. 3419, 08/16, 2023.
[40]        M. Petousis, I. Ntintakis, K. David, D. Sagris, N. Nasikas, A. Korlos, A. Moutsopoulou, N. Vidakis, A Coherent Assessment of the Compressive Strain Rate Response of PC, PETG, PMMA, and TPU Thermoplastics in MEX Additive Manufacturing, Polymers, Vol. 15, 09/28, 2023.
[41]        D. Kalas, K. Sima, P. Kadlec, R. Polansky, R. Soukup, J. Reboun, A. Hamacek, FFF 3D Printing in Electronic Applications: Dielectric and Thermal Properties of Selected Polymers, Polymers, Vol. 13, pp. 3702, 10/27, 2021.
[42]        N. Vidakis, M. Petousis, A. Korlos, E. Velidakis, N. Mountakis, C. Charou, A. Myftari, Strain Rate Sensitivity of Polycarbonate and Thermoplastic Polyurethane for Various 3D Printing Temperatures and Layer Heights, Polymers, Vol. 13, 08/17, 2021.
[43]        D. S, N. Shetty, Investigation of mechanical properties and applications of polylactic acids – a review, Materials Research Express, Vol. 6, 09/19, 2019.
[44]        A. Yonezawa, A. Yamada, Deterioration of the Mechanical Properties of FFF 3D-Printed PLA Structures, Inventions, Vol. 6, pp. 1, 12/22, 2020.
[45]        P. Latko-Durałek, K. Dydek, A. Boczkowska, Thermal, Rheological and Mechanical Properties of PETG/rPETG Blends, Journal of Polymers and the Environment, Vol. 27, 11/01, 2019.
[46]        A. Özen, D. Auhl, C. Völlmecke, J. Kiendl, B. Abali, Optimization of Manufacturing Parameters and Tensile Specimen Geometry for Fused Deposition Modeling (FDM) 3D-Printed PETG, Materials, Vol. 14, pp. 2556, 05/14, 2021.
[47]        M. Marin, C. Marinescu, Thermoelasticity of initially stressed bodies, asymptotic equipartition of energies, International Journal of Engineering Science, Vol. 36, No. 1, pp. 73-86, 1998/01/01/, 1998.
[48]        M. Marin, I. Abbas, R. Kumar, Relaxed Saint-Venant principle for thermoelastic micropolar diffusion, Structural Engineering and Mechanics, Vol. 51, pp. 651-662, 08/25, 2014.
[49]        M. M. Bhatti, M. Marin, R. Ellahi, I. M. Fudulu, Insight into the dynamics of EMHD hybrid nanofluid (ZnO/CuO-SA) flow through a pipe for geothermal energy applications, Journal of Thermal Analysis and Calorimetry, Vol. 148, No. 24, pp. 14261-14273, 2023/12/01, 2023.
[50]        A. Yadav, E. Carrera, M. Marin, M. Othman, Reflection of hygrothermal waves in a Nonlocal Theory of coupled thermo-elasticity, Mechanics of Advanced Materials and Structures, Vol. 31, pp. 1-14, 10/12, 2022.
Volume 56, Issue 2
April 2025
Pages 318-330
  • Receive Date: 15 February 2025
  • Revise Date: 21 February 2025
  • Accept Date: 21 February 2025