[1] M. Chacha, N. M. Hassan, A. Soufyane, Porous Thermoelasticity with Applications, in: R. B. Hetnarski, Encyclopedia of Thermal Stresses, Eds., pp. 3985-3990, Dordrecht: Springer Netherlands, 2014.
[2] A. Hobiny, I. Abbas, H. Alshehri, S. Vlase, M. Marin, Thermoelastic Analysis in Poro-Elastic Materials Using a TPL Model, Applied Sciences, Vol. 12, pp. 5914, 06/10, 2022.
[3] G. Gladysz, K. Chawla, 2014, Voids in materials: From unavoidable defects to designed cellular materials,
[4] B. Zhao, A. Gain, W. Ding, L. Zhang, X. Li, Y. Fu, A review on metallic porous materials: pore formation, mechanical properties, and their applications, The International Journal of Advanced Manufacturing Technology, Vol. 95, 03/01, 2018.
[5] D. I. Stoia, E. Linul, L. Marsavina, Influence of Manufacturing Parameters on Mechanical Properties of Porous Materials by Selective Laser Sintering, Materials, Vol. 12, No. 6, pp. 871, 2019.
[6] A. I. Lurie, A. Belyaev, 2010, Theory of Elasticity, Springer Berlin Heidelberg,
[7] A. Eringen, J. Wegner, Nonlocal Continuum Field Theories, Applied Mechanics Reviews - APPL MECH REV, Vol. 56, 03/01, 2003.
[8] A. C. Eringen, Vistas of nonlocal continuum physics, International Journal of Engineering Science, Vol. 30, No. 10, pp. 1551-1565, 1992/10/01/, 1992.
[9] A. C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves, International Journal of Engineering Science, Vol. 10, No. 5, pp. 425-435, 1972/05/01/, 1972.
[10] A. C. Eringen, Nonlocal continuum mechanics based on distributions, International Journal of Engineering Science, Vol. 44, No. 3, pp. 141-147, 2006/02/01/, 2006.
[11] L. Li, R. Lin, T. Y. Ng, A fractional nonlocal time-space viscoelasticity theory and its applications in structural dynamics, Applied Mathematical Modelling, Vol. 84, pp. 116-136, 2020/08/01/, 2020.
[12] L. Wang, J. Xu, J. Wang, B. L. Karihaloo, A mechanism-based spatiotemporal non-local constitutive formulation for elastodynamics of composites, Mechanics of Materials, Vol. 128, pp. 105-116, 2019/01/01/, 2019.
[13] F. Ebrahimi, K. Khosravi, A. Dabbagh, A novel spatial–temporal nonlocal strain gradient theorem for wave dispersion characteristics of FGM nanoplates, Waves in Random and Complex Media, Vol. 34, pp. 1-20, 09/27, 2021.
[14] M. Lazar, E. Agiasofitou, Nonlocal elasticity of Klein–Gordon type: Fundamentals and wave propagation, Wave Motion, Vol. 114, pp. 103038, 2022/09/01/, 2022.
[15] F. Ebrahimi, K. Khosravi, A. Dabbagh, Wave dispersion in viscoelastic FG nanobeams via a novel spatial–temporal nonlocal strain gradient framework, Waves in Random and Complex Media, Vol. 34, pp. 1-23, 09/06, 2021.
[16] R. Hu, C. Oskay, Spatial–temporal nonlocal homogenization model for transient anti-plane shear wave propagation in periodic viscoelastic composites, Computer Methods in Applied Mechanics and Engineering, Vol. 342, pp. 1-31, 2018/12/01/, 2018.
[17] E. Agiasofitou, M. Lazar, Nonlocal elasticity of Klein-Gordon type with internal length and time scales: Constitutive modelling and dispersion relations, PAMM, Vol. 23, 09/15, 2023.
[18] A. E. Abouelregal, M. Marin, A. Öchsner, A modified spatiotemporal nonlocal thermoelasticity theory with higher-order phase delays for a viscoelastic micropolar medium exposed to short-pulse laser excitation, Continuum Mechanics and Thermodynamics, Vol. 37, No. 1, pp. 15, 2024/12/15, 2024.
[19] S. Li, W. Zheng, L. Li, Spatiotemporally nonlocal homogenization method for viscoelastic porous metamaterial structures, International Journal of Mechanical Sciences, Vol. 282, pp. 109572, 2024/11/15/, 2024.
[20] Y. Jiang, L. Li, Y. Hu, A spatiotemporally-nonlocal continuum field theory of polymer networks, Science China: Physics, Mechanics and Astronomy, Vol. 66, pp. 254611, 05/06, 2023.
[21] L. Wang, Q. Zhang, J. Wang, Microstructural effects on overall dynamics of composites: an analytical method via spatiotemporal nonlocal model, Archive of Applied Mechanics, Vol. 93, 07/18, 2022.
[22] W. Nowacki, 1975, Dynamic Problems of Thermoelasticity, Springer Netherlands,
[23] J. Ignaczak, M. Ostoja-Starzewski, 2009, Thermoelasticity with finite wave speeds, OUP Oxford,
[24] R. B. Hetnarski, J. Ignaczak, Nonclassical dynamical thermoelasticity, International Journal of Solids and Structures, Vol. 37, pp. 215-224, 01/31, 2000.
[25] J. I. Richard B. Hetnarski, GENERALIZED THERMOELASTICITY, Journal of Thermal Stresses, Vol. 22, No. 4-5, pp. 451-476, 1999/06/01, 1999.
[26] H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids, Vol. 15, No. 5, pp. 299-309, 1967.
[27] A. E. Green, K. Lindsay, Thermoelasticity, Journal of elasticity, Vol. 2, No. 1, pp. 1-7, 1972.
[28] D. Y. Tzou, A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales, Journal of Heat Transfer-transactions of The Asme, Vol. 117, pp. 8-16, 1995.
[29] A. Abouelregal, Modified fractional thermoelasticity model with multi-relaxation times of higher order: application to spherical cavity exposed to a harmonic varying heat, Waves in Random and Complex Media, Vol. 31, pp. 1-21, 06/17, 2019.
[30] The effect of fractional thermoelasticity on a two-dimensional problem of a mode I crack in a rotating fiber-reinforced thermoelastic medium, Chinese Physics B, Vol. 22, No. 10, pp. 108102, 2013/10/01, 2013.
[31] P. Butzer, U. Westphal, An Introduction to Fractional Calculus, Application of Fractional Calculus in Physics, An Introduction to Fractional Calculus, Hilfer R. (Ed.), Applications of Fractional Calculus in Physics, pp. 1-85, 01/01, 2000.
[32] A. B. Malinowska, T. Odzijewicz, D. F. M. Torres, Fractional Calculus of Variations, in: Advanced Methods in the Fractional Calculus of Variations, Eds., pp. 23-30, Cham: Springer International Publishing, 2015.
[33] S. Chavez-Vázquez, J. F. Gómez-Aguilar, J. Lavin, R. Escobar Jiménez, V. Olivares Peregrino, Applications of Fractional Operators in Robotics: A Review, Journal of Intelligent & Robotic Systems, Vol. 104, 03/30, 2022.
[34] L. Beghin, F. Mainardi, R. Garrappa, 2021, Nonlocal and Fractional Operators, Springer International Publishing, Cham, 1st 2021.ed.
[35] M.-S. Abdelouahab, The Grünwald–Letnikov Fractional-Order Derivative with Fixed Memory Length, Mediterranean Journal of Mathematics, Vol. 13, 01/30, 2015.
[36] E. Fan, C. Li, Z. Li, Numerical approaches to Caputo-Hadamard fractional derivatives with applications to long-term integration of fractional differential systems, Communications in Nonlinear Science and Numerical Simulation, Vol. 106, pp. 106096, 11/01, 2021.
[37] A. Kajouni, A. Chafiki, K. Hilal, M. Oukessou, A New Conformable Fractional Derivative and Applications, International Journal of Differential Equations, Vol. 2021, pp. 1-5, 11/26, 2021.
[38] A. Mali, K. Kucche, A. Fernandez, H. M. Fahad, On tempered fractional calculus with respect to functions and the associated fractional differential equations, Mathematical Methods in the Applied Sciences, Vol. 45, pp. n/a-n/a, 06/03, 2022.
[39] A. Fernandez, C. Ustaoglu, On some analytic properties of tempered fractional calculus, Journal of Computational and Applied Mathematics, Vol. 366, pp. 112400, 08/01, 2019.
[40] N. Obeidat, S. Rawashdeh, Theories of tempered fractional calculus applied to tempered fractional Langevin and Vasicek equations, Mathematical Methods in the Applied Sciences, Vol. 46, pp. n/a-n/a, 01/15, 2023.
[41] V. Pathania, P. Dhiman, 2024, Generalized Thermoelastic Waves in a Homogeneous Anisotropic Plate with Voids,
[42] M. Othman, S. Mondal, A. Sur, Influence of memory-dependent derivative on generalized thermoelastic rotating porous solid via three-phase-lag model, International Journal of Computational Materials Science and Engineering, Vol. 12, 12/31, 2022.
[43] Y. Han, T. Lingchen, T. and He, Investigation on the thermoelastic response of a porous microplate in a modified fractional-order heat conduction model incorporating the nonlocal effect, Mechanics of Advanced Materials and Structures, Vol. 31, No. 25, pp. 6817-6828, 2024/11/04, 2024.
[44] C. Mahato, S. Biswas, Thermomechanical interactions in nonlocal thermoelastic medium with double porosity structure, Mechanics of Time-Dependent Materials, Vol. 28, pp. 1073-1110, 02/13, 2024.
[45] V. Gupta, B. M.S, S. Das, Impact of memory-dependent heat transfer on Rayleigh waves propagation in nonlocal piezo-thermo-elastic medium with voids, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 34, No. 4, pp. 1902-1926, 2024.
[46] Z. Zong, F. Chen, X. Yin, K. Li, Effect of Stress on Wave Propagation in Fluid-Saturated Porous Thermoelastic Media, Surveys in Geophysics, Vol. 44, 11/13, 2022.
[47] J. L. Nowinski, 1978, Theory of Thermoelasticity with Applications, Sijthoff & Noordhoff International Publishers,
[48] A. Abouelregal, Y. Alhassan, H. Althagafi, F. Alsharif, A Two-Temperature Fractional DPL Thermoelasticity Model with an Exponential Rabotnov Kernel for a Flexible Cylinder with Changeable Properties, Fractal and Fractional, Vol. 8, pp. 182, 03/22, 2024.
[49] A. Abouelregal, A. Soleiman, H. M. Sedighi, K. Khalil, M. Nasr, Advanced thermoelastic heat conduction model with two fractional parameters and phase-lags, Physica Scripta, 12/01, 2021.
[50] A. Charkaoui, A. Ben-Loghfyry, A novel multi-frame image super-resolution model based on regularized nonlinear diffusion with Caputo time fractional derivative, Communications in Nonlinear Science and Numerical Simulation, pp. 108280, 08/01, 2024.
[51] S. Nageswara Rao, M. Khuddush, A. A. H. Ahmadini, Existence of Positive Solutions for a Nonlinear Iterative System of Boundary Value Problems with Tempered Fractional Order Derivative, Journal of Mathematics, Vol. 2024, No. 1, pp. 8862634, 2024.
[52] M. Marin, I. Abbas, R. Kumar, Relaxed Saint-Venant principle for thermoelastic micropolar diffusion, Structural Engineering and Mechanics, Vol. 51, pp. 651-662, 08/25, 2014.
[53] A. K. Yadav, C. Erasmo, M. Marin, M. I. A. and Othman, Reflection of hygrothermal waves in a Nonlocal Theory of coupled thermo-elasticity, Mechanics of Advanced Materials and Structures, Vol. 31, No. 5, pp. 1083-1096, 2024/03/03, 2024.
[54] M. M. Bhatti, M. Marin, R. Ellahi, I. M. Fudulu, Insight into the dynamics of EMHD hybrid nanofluid (ZnO/CuO-SA) flow through a pipe for geothermal energy applications, Journal of Thermal Analysis and Calorimetry, Vol. 148, No. 24, pp. 14261-14273, 2023/12/01, 2023.
[55] B. Singh, Wave propagation in a generalized thermoelastic material with voids, Applied Mathematics and Computation, Vol. 189, No. 1, pp. 698-709, 2007/06/01/, 2007.