Spatiotemporal Nonlocal Thermoelastic Model with Caputo-Tempered Fractional Derivatives for Infinite Thermoelastic Porous Half-Space with Voids

Document Type : Research Paper

Authors

1 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

2 Department of Mathematics and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania

3 Academy of Romanian Scientists, Ilfov Street, 3, 050045 Bucharest, Romania

4 Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract

This study presents a novel generalized nonlocal thermoelastic model for porous materials with voids, addressing key limitations in traditional thermoelasticity frameworks. The proposed model builds on the two-phase lag (TPL) theory, incorporating spatial and temporal nonlocal effects to account for microscale and memory-dependent behaviors in porous structures. A significant innovation lies in integrating Caputo-tempered fractional derivatives, which introduce exponential tempering to mitigate the long-range memory effects associated with standard fractional derivatives. This refined mathematical framework provides an enhanced and accurate representation of the dynamic thermomechanical behavior of elastic materials with voids. To validate the model, the transient response of a semi-infinite porous medium subjected to a non-Gaussian laser-shaped heat flux on its free, stress-free surface is analyzed. This study fills a critical research gap by evaluating the combined influence of nonlocal spatial-temporal effects, phase delay, and tempered fractional parameters on the size-dependent thermomechanical responses of half-space porous nanostructures. Key findings reveal that incorporating tempered fractional derivatives significantly improves the predictability of thermal and mechanical responses while offering a more realistic depiction of energy dissipation and wave propagation. These contributions highlight the potential of the proposed model for advancing the understanding and optimization of porous nanostructures in engineering applications.

Keywords

Main Subjects

[1]          M. Chacha, N. M. Hassan, A. Soufyane, Porous Thermoelasticity with Applications,  in: R. B. Hetnarski, Encyclopedia of Thermal Stresses, Eds., pp. 3985-3990, Dordrecht: Springer Netherlands, 2014.
[2]          A. Hobiny, I. Abbas, H. Alshehri, S. Vlase, M. Marin, Thermoelastic Analysis in Poro-Elastic Materials Using a TPL Model, Applied Sciences, Vol. 12, pp. 5914, 06/10, 2022.
[3]          G. Gladysz, K. Chawla, 2014, Voids in materials: From unavoidable defects to designed cellular materials,
[4]          B. Zhao, A. Gain, W. Ding, L. Zhang, X. Li, Y. Fu, A review on metallic porous materials: pore formation, mechanical properties, and their applications, The International Journal of Advanced Manufacturing Technology, Vol. 95, 03/01, 2018.
[5]          D. I. Stoia, E. Linul, L. Marsavina, Influence of Manufacturing Parameters on Mechanical Properties of Porous Materials by Selective Laser Sintering, Materials, Vol. 12, No. 6, pp. 871, 2019.
[6]          A. I. Lurie, A. Belyaev, 2010, Theory of Elasticity, Springer Berlin Heidelberg,
[7]          A. Eringen, J. Wegner, Nonlocal Continuum Field Theories, Applied Mechanics Reviews - APPL MECH REV, Vol. 56, 03/01, 2003.
[8]          A. C. Eringen, Vistas of nonlocal continuum physics, International Journal of Engineering Science, Vol. 30, No. 10, pp. 1551-1565, 1992/10/01/, 1992.
[9]          A. C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves, International Journal of Engineering Science, Vol. 10, No. 5, pp. 425-435, 1972/05/01/, 1972.
[10]        A. C. Eringen, Nonlocal continuum mechanics based on distributions, International Journal of Engineering Science, Vol. 44, No. 3, pp. 141-147, 2006/02/01/, 2006.
[11]        L. Li, R. Lin, T. Y. Ng, A fractional nonlocal time-space viscoelasticity theory and its applications in structural dynamics, Applied Mathematical Modelling, Vol. 84, pp. 116-136, 2020/08/01/, 2020.
[12]        L. Wang, J. Xu, J. Wang, B. L. Karihaloo, A mechanism-based spatiotemporal non-local constitutive formulation for elastodynamics of composites, Mechanics of Materials, Vol. 128, pp. 105-116, 2019/01/01/, 2019.
[13]        F. Ebrahimi, K. Khosravi, A. Dabbagh, A novel spatial–temporal nonlocal strain gradient theorem for wave dispersion characteristics of FGM nanoplates, Waves in Random and Complex Media, Vol. 34, pp. 1-20, 09/27, 2021.
[14]        M. Lazar, E. Agiasofitou, Nonlocal elasticity of Klein–Gordon type: Fundamentals and wave propagation, Wave Motion, Vol. 114, pp. 103038, 2022/09/01/, 2022.
[15]        F. Ebrahimi, K. Khosravi, A. Dabbagh, Wave dispersion in viscoelastic FG nanobeams via a novel spatial–temporal nonlocal strain gradient framework, Waves in Random and Complex Media, Vol. 34, pp. 1-23, 09/06, 2021.
[16]        R. Hu, C. Oskay, Spatial–temporal nonlocal homogenization model for transient anti-plane shear wave propagation in periodic viscoelastic composites, Computer Methods in Applied Mechanics and Engineering, Vol. 342, pp. 1-31, 2018/12/01/, 2018.
[17]        E. Agiasofitou, M. Lazar, Nonlocal elasticity of Klein-Gordon type with internal length and time scales: Constitutive modelling and dispersion relations, PAMM, Vol. 23, 09/15, 2023.
[18]        A. E. Abouelregal, M. Marin, A. Öchsner, A modified spatiotemporal nonlocal thermoelasticity theory with higher-order phase delays for a viscoelastic micropolar medium exposed to short-pulse laser excitation, Continuum Mechanics and Thermodynamics, Vol. 37, No. 1, pp. 15, 2024/12/15, 2024.
[19]        S. Li, W. Zheng, L. Li, Spatiotemporally nonlocal homogenization method for viscoelastic porous metamaterial structures, International Journal of Mechanical Sciences, Vol. 282, pp. 109572, 2024/11/15/, 2024.
[20]        Y. Jiang, L. Li, Y. Hu, A spatiotemporally-nonlocal continuum field theory of polymer networks, Science China: Physics, Mechanics and Astronomy, Vol. 66, pp. 254611, 05/06, 2023.
[21]        L. Wang, Q. Zhang, J. Wang, Microstructural effects on overall dynamics of composites: an analytical method via spatiotemporal nonlocal model, Archive of Applied Mechanics, Vol. 93, 07/18, 2022.
[22]        W. Nowacki, 1975, Dynamic Problems of Thermoelasticity, Springer Netherlands,
[23]        J. Ignaczak, M. Ostoja-Starzewski, 2009, Thermoelasticity with finite wave speeds, OUP Oxford,
[24]        R. B. Hetnarski, J. Ignaczak, Nonclassical dynamical thermoelasticity, International Journal of Solids and Structures, Vol. 37, pp. 215-224, 01/31, 2000.
[25]        J. I. Richard B. Hetnarski, GENERALIZED THERMOELASTICITY, Journal of Thermal Stresses, Vol. 22, No. 4-5, pp. 451-476, 1999/06/01, 1999.
[26]        H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids, Vol. 15, No. 5, pp. 299-309, 1967.
[27]        A. E. Green, K. Lindsay, Thermoelasticity, Journal of elasticity, Vol. 2, No. 1, pp. 1-7, 1972.
[28]        D. Y. Tzou, A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales, Journal of Heat Transfer-transactions of The Asme, Vol. 117, pp. 8-16, 1995.
[29]        A. Abouelregal, Modified fractional thermoelasticity model with multi-relaxation times of higher order: application to spherical cavity exposed to a harmonic varying heat, Waves in Random and Complex Media, Vol. 31, pp. 1-21, 06/17, 2019.
[30]        The effect of fractional thermoelasticity on a two-dimensional problem of a mode I crack in a rotating fiber-reinforced thermoelastic medium, Chinese Physics B, Vol. 22, No. 10, pp. 108102, 2013/10/01, 2013.
[31]        P. Butzer, U. Westphal, An Introduction to Fractional Calculus, Application of Fractional Calculus in Physics, An Introduction to Fractional Calculus, Hilfer R. (Ed.), Applications of Fractional Calculus in Physics, pp. 1-85, 01/01, 2000.
[32]        A. B. Malinowska, T. Odzijewicz, D. F. M. Torres, Fractional Calculus of Variations,  in: Advanced Methods in the Fractional Calculus of Variations, Eds., pp. 23-30, Cham: Springer International Publishing, 2015.
[33]        S. Chavez-Vázquez, J. F. Gómez-Aguilar, J. Lavin, R. Escobar Jiménez, V. Olivares Peregrino, Applications of Fractional Operators in Robotics: A Review, Journal of Intelligent & Robotic Systems, Vol. 104, 03/30, 2022.
[34]        L. Beghin, F. Mainardi, R. Garrappa, 2021, Nonlocal and Fractional Operators, Springer International Publishing, Cham, 1st 2021.ed.
[35]        M.-S. Abdelouahab, The Grünwald–Letnikov Fractional-Order Derivative with Fixed Memory Length, Mediterranean Journal of Mathematics, Vol. 13, 01/30, 2015.
[36]        E. Fan, C. Li, Z. Li, Numerical approaches to Caputo-Hadamard fractional derivatives with applications to long-term integration of fractional differential systems, Communications in Nonlinear Science and Numerical Simulation, Vol. 106, pp. 106096, 11/01, 2021.
[37]        A. Kajouni, A. Chafiki, K. Hilal, M. Oukessou, A New Conformable Fractional Derivative and Applications, International Journal of Differential Equations, Vol. 2021, pp. 1-5, 11/26, 2021.
[38]        A. Mali, K. Kucche, A. Fernandez, H. M. Fahad, On tempered fractional calculus with respect to functions and the associated fractional differential equations, Mathematical Methods in the Applied Sciences, Vol. 45, pp. n/a-n/a, 06/03, 2022.
[39]        A. Fernandez, C. Ustaoglu, On some analytic properties of tempered fractional calculus, Journal of Computational and Applied Mathematics, Vol. 366, pp. 112400, 08/01, 2019.
[40]        N. Obeidat, S. Rawashdeh, Theories of tempered fractional calculus applied to tempered fractional Langevin and Vasicek equations, Mathematical Methods in the Applied Sciences, Vol. 46, pp. n/a-n/a, 01/15, 2023.
[41]        V. Pathania, P. Dhiman, 2024, Generalized Thermoelastic Waves in a Homogeneous Anisotropic Plate with Voids,
[42]        M. Othman, S. Mondal, A. Sur, Influence of memory-dependent derivative on generalized thermoelastic rotating porous solid via three-phase-lag model, International Journal of Computational Materials Science and Engineering, Vol. 12, 12/31, 2022.
[43]        Y. Han, T. Lingchen, T. and He, Investigation on the thermoelastic response of a porous microplate in a modified fractional-order heat conduction model incorporating the nonlocal effect, Mechanics of Advanced Materials and Structures, Vol. 31, No. 25, pp. 6817-6828, 2024/11/04, 2024.
[44]        C. Mahato, S. Biswas, Thermomechanical interactions in nonlocal thermoelastic medium with double porosity structure, Mechanics of Time-Dependent Materials, Vol. 28, pp. 1073-1110, 02/13, 2024.
[45]        V. Gupta, B. M.S, S. Das, Impact of memory-dependent heat transfer on Rayleigh waves propagation in nonlocal piezo-thermo-elastic medium with voids, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 34, No. 4, pp. 1902-1926, 2024.
[46]        Z. Zong, F. Chen, X. Yin, K. Li, Effect of Stress on Wave Propagation in Fluid-Saturated Porous Thermoelastic Media, Surveys in Geophysics, Vol. 44, 11/13, 2022.
[47]        J. L. Nowinski, 1978, Theory of Thermoelasticity with Applications, Sijthoff & Noordhoff International Publishers,
[48]        A. Abouelregal, Y. Alhassan, H. Althagafi, F. Alsharif, A Two-Temperature Fractional DPL Thermoelasticity Model with an Exponential Rabotnov Kernel for a Flexible Cylinder with Changeable Properties, Fractal and Fractional, Vol. 8, pp. 182, 03/22, 2024.
[49]        A. Abouelregal, A. Soleiman, H. M. Sedighi, K. Khalil, M. Nasr, Advanced thermoelastic heat conduction model with ‎two fractional parameters and phase-lags, Physica Scripta, 12/01, 2021.
[50]        A. Charkaoui, A. Ben-Loghfyry, A novel multi-frame image super-resolution model based on regularized nonlinear diffusion with Caputo time fractional derivative, Communications in Nonlinear Science and Numerical Simulation, pp. 108280, 08/01, 2024.
[51]        S. Nageswara Rao, M. Khuddush, A. A. H. Ahmadini, Existence of Positive Solutions for a Nonlinear Iterative System of Boundary Value Problems with Tempered Fractional Order Derivative, Journal of Mathematics, Vol. 2024, No. 1, pp. 8862634, 2024.
[52]        M. Marin, I. Abbas, R. Kumar, Relaxed Saint-Venant principle for thermoelastic micropolar diffusion, Structural Engineering and Mechanics, Vol. 51, pp. 651-662, 08/25, 2014.
[53]        A. K. Yadav, C. Erasmo, M. Marin, M. I. A. and Othman, Reflection of hygrothermal waves in a Nonlocal Theory of coupled thermo-elasticity, Mechanics of Advanced Materials and Structures, Vol. 31, No. 5, pp. 1083-1096, 2024/03/03, 2024.
[54]        M. M. Bhatti, M. Marin, R. Ellahi, I. M. Fudulu, Insight into the dynamics of EMHD hybrid nanofluid (ZnO/CuO-SA) flow through a pipe for geothermal energy applications, Journal of Thermal Analysis and Calorimetry, Vol. 148, No. 24, pp. 14261-14273, 2023/12/01, 2023.
[55]        B. Singh, Wave propagation in a generalized thermoelastic material with voids, Applied Mathematics and Computation, Vol. 189, No. 1, pp. 698-709, 2007/06/01/, 2007.
Volume 56, Issue 2
April 2025
Pages 276-295
  • Receive Date: 15 February 2025
  • Revise Date: 15 March 2025
  • Accept Date: 17 March 2025