Exploring graphene origami-enabled metamaterials: A review

Document Type : Research Paper

Authors

1 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

2 Department of Mechanical engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran

3 Department of Civil Engineering, Lakehead University, Thunder Bay, Ontario, Canada

Abstract

Auxetic metamaterials are a class of material with tunable Poisson's ratio. Nonetheless, most auxetics have weak mechanical properties, thus, implementing graphene origami (GOri) as a strong reinforcement can overcome this deficiency. This review explores the burgeoning field of auxetic metamaterials enhanced through the integration of graphene origami. This study also presents an in-depth investigation of the background of negative Poisson's ratio auxetic metamaterials, most importantly, graphene origami. Furthermore, it focuses on the notable mechanical characteristics such as increased flexibility, strength, and dynamic response of GOri-reinforced composites. Leveraging Hamilton's principle and other theoretical frameworks, this paper collates and examines the equation of motion derivations and the impact of various parameters on GOri behaviour.

Keywords

Main Subjects

[1]    Y. Liu, X. Zhang, Metamaterials: a new frontier of science and technology, Chemical Society Reviews, Vol. 40, No. 5, pp. 2494-2507, 2011. 
[2]    N. I. Zheludev, Y. S. Kivshar, From metamaterials to metadevices, Nature materials, Vol. 11, No. 11, pp. 917-924, 2012. 
[3]    J. H. Lee, J. P. Singer, E. L. Thomas, Micro‐/nanostructured mechanical metamaterials, Advanced materials, Vol. 24, No. 36, pp. 4782-4810, 2012. 
[4]    C. Huang, L. Chen, Negative Poisson's ratio in modern functional materials, Advanced Materials, Vol. 28, No. 37, pp. 8079-8096, 2016. 
[5]    G. Imbalzano, P. Tran, T. D. Ngo, P. V. Lee, A numerical study of auxetic composite panels under blast loadings, Composite Structures, Vol. 135, pp. 339-352, 2016. 
[6]    L. Jiang, H. Hu, Low-velocity impact response of multilayer orthogonal structural composite with auxetic effect, Composite Structures, Vol. 169, pp. 62-68, 2017. 
[7]    S. Mohsenizadeh, R. Alipour, M. S. Rad, A. F. Nejad, Z. Ahmad, Crashworthiness assessment of auxetic foam-filled tube under quasi-static axial loading, Materials & Design, Vol. 88, pp. 258-268, 2015. 
[8]    J. He, H.-H. Huang, Tunable acoustic wave propagation through planar auxetic metamaterial, Journal of Mechanics, Vol. 34, No. 2, pp. 113-122, 2018. 
[9]    Y. Chen, F. Qian, L. Zuo, F. Scarpa, L. Wang, Broadband and multiband vibration mitigation in lattice metamaterials with sinusoidally-shaped ligaments, Extreme Mechanics Letters, Vol. 17, pp. 24-32, 2017. 
[10]    Y. Chen, L. Wang, Harnessing structural hierarchy to design stiff and lightweight phononic crystals, Extreme Mechanics Letters, Vol. 9, pp. 91-96, 2016. 
[11]    C. K. Ng, K. K. Saxena, R. Das, E. Saavedra Flores, On the anisotropic and negative thermal expansion from dual-material re-entrant-type cellular metamaterials, Journal of materials science, Vol. 52, pp. 899-912, 2017. 
[12]    Y. Han, Y. Zhou, G. Qin, J. Dong, D. S. Galvao, M. Hu, Unprecedented mechanical response of the lattice thermal conductivity of auxetic carbon crystals, Carbon, Vol. 122, pp. 374-380, 2017. 
[13]    X. Ren, J. Shen, A. Ghaedizadeh, H. Tian, Y. M. Xie, Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties, Smart Materials and Structures, Vol. 24, No. 9, pp. 095016, 2015. 
[14]    X. Ren, J. Shen, P. Tran, T. D. Ngo, Y. M. Xie, Design and characterisation of a tuneable 3D buckling-induced auxetic metamaterial, Materials & Design, Vol. 139, pp. 336-342, 2018. 
[15]    S. Zhao, Y. Zhang, H. Wu, Y. Zhang, J. Yang, Functionally graded graphene origami-enabled auxetic metamaterial beams with tunable buckling and postbuckling resistance, Engineering Structures, Vol. 268, pp. 114763, 2022. 
[16]    A. Dabbagh, F. Ebrahimi, Postbuckling analysis of meta-nanocomposite beams by considering the CNTs’ agglomeration, The European Physical Journal Plus, Vol. 136, No. 11, pp. 1168, 2021. 
[17]    F. Ebrahimi, M. Dadashi, Composite cylindrical shells with auxetic core on elastic foundation: A nonlinear dynamic analysis, in Proceeding of, Elsevier, pp. 105170. 
[18]    F. Ebrahimi, M. Sepahvand, Wave propagation analysis of cylindrical sandwich shell with auxetic core utilizing first-order shear deformable theory (FSDT), Mechanics Based Design of Structures and Machines, pp. 1-25, 2022. 
[19]    G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, Recent advances in two-dimensional materials beyond graphene, ACS nano, Vol. 9, No. 12, pp. 11509-11539, 2015. 
[20]    H. Jang, Y. J. Park, X. Chen, T. Das, M. S. Kim, J. H. Ahn, Graphene‐based flexible and stretchable electronics, Advanced Materials, Vol. 28, No. 22, pp. 4184-4202, 2016. 
[21]    R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage, Nature materials, Vol. 14, No. 3, pp. 271-279, 2015. 
[22]    W. Lv, Z. Li, Y. Deng, Q.-H. Yang, F. Kang, Graphene-based materials for electrochemical energy storage devices: opportunities and challenges, Energy Storage Materials, Vol. 2, pp. 107-138, 2016. 
[23]    R. Kurapati, K. Kostarelos, M. Prato, A. Bianco, Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead, Advanced Materials, Vol. 28, No. 29, pp. 6052-6074, 2016. 
[24]    E. Pomerantseva, Y. Gogotsi, Two-dimensional heterostructures for energy storage, Nature Energy, Vol. 2, No. 7, pp. 1-6, 2017. 
[25]    X. Ning, X. Wang, Y. Zhang, X. Yu, D. Choi, N. Zheng, D. S. Kim, Y. Huang, Y. Zhang, J. A. Rogers, Assembly of advanced materials into 3D functional structures by methods inspired by origami and kirigami: a review, Advanced Materials Interfaces, Vol. 5, No. 13, pp. 1800284, 2018. 
[26]    V. B. Shenoy, D. H. Gracias, Self-folding thin-film materials: From nanopolyhedra to graphene origami, Mrs Bulletin, Vol. 37, No. 9, pp. 847-854, 2012. 
[27]    D. T. Ho, S. Y. Kim, U. Schwingenschlögl, Graphene origami structures with superflexibility and highly tunable auxeticity, Physical Review B, Vol. 102, No. 17, pp. 174106, 2020. 
[28]    H. Chen, X.-L. Zhang, Y.-Y. Zhang, D. Wang, D.-L. Bao, Y. Que, W. Xiao, S. Du, M. Ouyang, S. T. Pantelides, Atomically precise, custom-design origami graphene nanostructures, Science, Vol. 365, No. 6457, pp. 1036-1040, 2019. 
[29]    S. Zhao, Y. Zhang, Y. Zhang, J. Yang, S. Kitipornchai, Graphene origami-enabled auxetic metallic metamaterials: an atomistic insight, International Journal of Mechanical Sciences, Vol. 212, pp. 106814, 2021. 
[30]    J. Cai, E. Estakhrianhaghighi, A. Akbarzadeh, Functionalized graphene origami metamaterials with tunable thermal conductivity, Carbon, Vol. 191, pp. 610-624, 2022. 
[31]    D. T. Ho, H. S. Park, S. Y. Kim, U. Schwingenschlögl, Graphene origami with highly tunable coefficient of thermal expansion, ACS nano, Vol. 14, No. 7, pp. 8969-8974, 2020. 
[32]    N. Novak, M. Vesenjak, Z. Ren, Auxetic cellular materials-a review, Strojniški vestnik-Journal of Mechanical Engineering, Vol. 62, No. 9, pp. 485-493, 2016. 
[33]    J. Choi, R. Lakes, Non-linear properties of metallic cellular materials with a negative Poisson's ratio, Journal of Materials Science, Vol. 27, pp. 5375-5381, 1992. 
[34]    V. Coenen, K. Alderson, Mechanisms of failure in the static indentation resistance of auxetic carbon fibre laminates, Physica status solidi (b), Vol. 248, No. 1, pp. 66-72, 2011. 
[35]    J. Choi, R. Lakes, Fracture toughness of re-entrant foam materials with a negative Poisson's ratio: experiment and analysis, International Journal of fracture, Vol. 80, pp. 73-83, 1996. 
[36]    R. Lakes, Foam structures with a negative Poisson's ratio, Science, Vol. 235, No. 4792, pp. 1038-1040, 1987. 
[37]    A. Alderson, J. Rasburn, S. Ameer-Beg, P. G. Mullarkey, W. Perrie, K. E. Evans, An auxetic filter: a tuneable filter displaying enhanced size selectivity or defouling properties, Industrial & engineering chemistry research, Vol. 39, No. 3, pp. 654-665, 2000. 
[38]    K. E. Evans, Auxetic polymers: a new range of materials, Endeavour, Vol. 15, No. 4, pp. 170-174, 1991. 
[39]    A. Alderson, K. Alderson, Auxetic materials, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 221, No. 4, pp. 565-575, 2007. 
[40]    G. Imbalzano, P. Tran, T. D. Ngo, P. V. Lee, Three-dimensional modelling of auxetic sandwich panels for localised impact resistance, Journal of Sandwich Structures & Materials, Vol. 19, No. 3, pp. 291-316, 2017. 
[41]    W. Hou, X. Yang, W. Zhang, Y. Xia, Design of energy-dissipating structure with functionally graded auxetic cellular material, International Journal of Crashworthiness, Vol. 23, No. 4, pp. 366-376, 2018. 
[42]    G. Imbalzano, S. Linforth, T. D. Ngo, P. V. S. Lee, P. Tran, Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs, Composite Structures, Vol. 183, pp. 242-261, 2018. 
[43]    F. Ebrahimi, R. Nopour, A. Dabbagh, Smart laminates with an auxetic ply rested on visco-Pasternak medium: Active control of the system’s oscillation, Engineering with Computers, pp. 1-11, 2021. 
[44]    F. Ebrahimi, M. F. Ahari, Thermomechanical active vibration control of auxetic plates with magnetostrictive layers, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 46, No. 1, pp. 19, 2024. 
[45]    M. Mahinzare, A. Rastgoo, F. Ebrahimi, Magnetic field effects on wave dispersion of piezo-electrically actuated auxetic sandwich shell via GPL reinforcement, 2023. 
[46]    F. Ebrahimi, M. F. Ahari, Dynamic analysis of meta-material plates with magnetostrictive face sheets, International Journal of Structural Stability and Dynamics, pp. 2450174, 2023. 
[47]    W. Xu, Z. Qin, C.-T. Chen, H. R. Kwag, Q. Ma, A. Sarkar, M. J. Buehler, D. H. Gracias, Ultrathin thermoresponsive self-folding 3D graphene, Science advances, Vol. 3, No. 10, pp. e1701084, 2017. 
[48]    K. Kim, Z. Lee, B. D. Malone, K. T. Chan, B. Alemán, W. Regan, W. Gannett, M. Crommie, M. L. Cohen, A. Zettl, Multiply folded graphene, Physical Review B, Vol. 83, No. 24, pp. 245433, 2011. 
[49]    N. Patra, B. Wang, P. Král, Nanodroplet activated and guided folding of graphene nanostructures, Nano letters, Vol. 9, No. 11, pp. 3766-3771, 2009. 
[50]    F. Guo, F. Kim, T. H. Han, V. B. Shenoy, J. Huang, R. H. Hurt, Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases, Acs Nano, Vol. 5, No. 10, pp. 8019-8025, 2011. 
[51]    Y. Chen, F. Guo, A. Jachak, S.-P. Kim, D. Datta, J. Liu, I. Kulaots, C. Vaslet, H. D. Jang, J. Huang, Aerosol synthesis of cargo-filled graphene nanosacks, Nano letters, Vol. 12, No. 4, pp. 1996-2002, 2012. 
[52]    J. Zhang, J. Xiao, X. Meng, C. Monroe, Y. Huang, J.-M. Zuo, Free folding of suspended graphene sheets by random mechanical stimulation, Physical review letters, Vol. 104, No. 16, pp. 166805, 2010. 
[53]    C. Zhang, C. Lu, L. Pei, J. Li, R. Wang, The wrinkling and buckling of graphene induced by nanotwinned copper matrix: A molecular dynamics study, Nano Materials Science, Vol. 3, No. 1, pp. 95-103, 2021. 
[54]    S. Zhao, Y. Zhang, Y. Zhang, W. Zhang, J. Yang, S. Kitipornchai, Genetic programming-assisted micromechanical models of graphene origami-enabled metal metamaterials, Acta Materialia, Vol. 228, pp. 117791, 2022. 
[55]    F. Ebrahimi, H. Ezzati, Dynamic analysis of thermally affected nanocomposite plates reinforced with functionalized graphene oxide nanoparticles, Acta Mechanica, pp. 1-18, 2023. 
[56]    S. Zhao, Y. Zhang, D. Chen, J. Yang, S. Kitipornchai, Enhanced thermal buckling resistance of folded graphene reinforced nanocomposites with negative thermal expansion: From atomistic study to continuum mechanics modelling, Composite Structures, Vol. 279, pp. 114872, 2022. 
[57]    J. An, A. Wang, K. Zhang, W. Zhang, L. Song, B. Xiao, R. Wang, Bending and buckling analysis of functionally graded graphene origami metamaterial irregular plates using generalized finite difference method, Results in Physics, Vol. 53, pp. 106945, 2023. 
[58]    B. Murari, S. Zhao, Y. Zhang, J. Yang, Static and dynamic instability of functionally graded graphene origami-enabled auxetic metamaterial beams with variable thickness in fluid, Ocean Engineering, Vol. 280, pp. 114859, 2023. 
[59]    Y. Lv, J. Zhang, J. Wu, L. Li, Mechanical and thermal postbuckling of functionally graded graphene origami-enabled auxetic metamaterials plates, Engineering Structures, Vol. 298, pp. 117043, 2024. 
[60]    Y. Chen, P. Shi, Y. Bai, J. Li, J. Feng, P. Sareh, Engineered origami crease perforations for optimal mechanical performance and fatigue life, Thin-Walled Structures, Vol. 185, pp. 110572, 2023. 
[61]    S. Zhao, Y. Zhang, Y. Zhang, J. Yang, S. Kitipornchai, Vibrational characteristics of functionally graded graphene origami-enabled auxetic metamaterial beams based on machine learning assisted models, Aerospace Science and Technology, Vol. 130, pp. 107906, 2022. 
[62]    H. Ezzati, S. Pashalou, A. Rastgoo, F. Ebrahimi, Vibration analysis of multilayer graphene origami-enabled metamaterial plates, Acta Mechanica, pp. 1-18, 2024. 
[63]    S. Zhao, Y. Zhang, Y. Zhang, J. Yang, S. Kitipornchai, A functionally graded auxetic metamaterial beam with tunable nonlinear free vibration characteristics via graphene origami, Thin-Walled Structures, Vol. 181, pp. 109997, 2022. 
[64]    H. Vali, M. Arefi, Extension of a novel higher order modeling to the vibration responses of sandwich graphene origami cylindrical panel, Archives of Civil and Mechanical Engineering, Vol. 23, No. 4, pp. 268, 2023. 
[65]    B. Murari, S. Zhao, Y. Zhang, J. Yang, Graphene origami-enabled auxetic metamaterial tapered beams in fluid: Nonlinear vibration and postbuckling analyses via physics-embedded machine learning model, Applied Mathematical Modelling, 2023. 
[66]    B. Murari, S. Zhao, Y. Zhang, L. Ke, J. Yang, Vibrational characteristics of functionally graded graphene origami-enabled auxetic metamaterial beams with variable thickness in fluid, Engineering Structures, Vol. 277, pp. 115440, 2023. 
[67]    F. Ebrahimi, M. Parsi, Wave propagation analysis of functionally graded graphene origami-enabled auxetic metamaterial beams resting on an elastic foundation, Acta Mechanica, Vol. 234, No. 12, pp. 6169-6190, 2023. 
Volume 56, Issue 1
January 2025
Pages 249-263
  • Receive Date: 29 October 2024
  • Revise Date: 10 December 2024
  • Accept Date: 15 December 2024