[1] Y. Liu, X. Zhang, Metamaterials: a new frontier of science and technology, Chemical Society Reviews, Vol. 40, No. 5, pp. 2494-2507, 2011.
[2] N. I. Zheludev, Y. S. Kivshar, From metamaterials to metadevices, Nature materials, Vol. 11, No. 11, pp. 917-924, 2012.
[3] J. H. Lee, J. P. Singer, E. L. Thomas, Micro‐/nanostructured mechanical metamaterials, Advanced materials, Vol. 24, No. 36, pp. 4782-4810, 2012.
[4] C. Huang, L. Chen, Negative Poisson's ratio in modern functional materials, Advanced Materials, Vol. 28, No. 37, pp. 8079-8096, 2016.
[5] G. Imbalzano, P. Tran, T. D. Ngo, P. V. Lee, A numerical study of auxetic composite panels under blast loadings, Composite Structures, Vol. 135, pp. 339-352, 2016.
[6] L. Jiang, H. Hu, Low-velocity impact response of multilayer orthogonal structural composite with auxetic effect, Composite Structures, Vol. 169, pp. 62-68, 2017.
[7] S. Mohsenizadeh, R. Alipour, M. S. Rad, A. F. Nejad, Z. Ahmad, Crashworthiness assessment of auxetic foam-filled tube under quasi-static axial loading, Materials & Design, Vol. 88, pp. 258-268, 2015.
[8] J. He, H.-H. Huang, Tunable acoustic wave propagation through planar auxetic metamaterial, Journal of Mechanics, Vol. 34, No. 2, pp. 113-122, 2018.
[9] Y. Chen, F. Qian, L. Zuo, F. Scarpa, L. Wang, Broadband and multiband vibration mitigation in lattice metamaterials with sinusoidally-shaped ligaments, Extreme Mechanics Letters, Vol. 17, pp. 24-32, 2017.
[10] Y. Chen, L. Wang, Harnessing structural hierarchy to design stiff and lightweight phononic crystals, Extreme Mechanics Letters, Vol. 9, pp. 91-96, 2016.
[11] C. K. Ng, K. K. Saxena, R. Das, E. Saavedra Flores, On the anisotropic and negative thermal expansion from dual-material re-entrant-type cellular metamaterials, Journal of materials science, Vol. 52, pp. 899-912, 2017.
[12] Y. Han, Y. Zhou, G. Qin, J. Dong, D. S. Galvao, M. Hu, Unprecedented mechanical response of the lattice thermal conductivity of auxetic carbon crystals, Carbon, Vol. 122, pp. 374-380, 2017.
[13] X. Ren, J. Shen, A. Ghaedizadeh, H. Tian, Y. M. Xie, Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties, Smart Materials and Structures, Vol. 24, No. 9, pp. 095016, 2015.
[14] X. Ren, J. Shen, P. Tran, T. D. Ngo, Y. M. Xie, Design and characterisation of a tuneable 3D buckling-induced auxetic metamaterial, Materials & Design, Vol. 139, pp. 336-342, 2018.
[15] S. Zhao, Y. Zhang, H. Wu, Y. Zhang, J. Yang, Functionally graded graphene origami-enabled auxetic metamaterial beams with tunable buckling and postbuckling resistance, Engineering Structures, Vol. 268, pp. 114763, 2022.
[16] A. Dabbagh, F. Ebrahimi, Postbuckling analysis of meta-nanocomposite beams by considering the CNTs’ agglomeration, The European Physical Journal Plus, Vol. 136, No. 11, pp. 1168, 2021.
[17] F. Ebrahimi, M. Dadashi, Composite cylindrical shells with auxetic core on elastic foundation: A nonlinear dynamic analysis, in Proceeding of, Elsevier, pp. 105170.
[18] F. Ebrahimi, M. Sepahvand, Wave propagation analysis of cylindrical sandwich shell with auxetic core utilizing first-order shear deformable theory (FSDT), Mechanics Based Design of Structures and Machines, pp. 1-25, 2022.
[19] G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, Recent advances in two-dimensional materials beyond graphene, ACS nano, Vol. 9, No. 12, pp. 11509-11539, 2015.
[20] H. Jang, Y. J. Park, X. Chen, T. Das, M. S. Kim, J. H. Ahn, Graphene‐based flexible and stretchable electronics, Advanced Materials, Vol. 28, No. 22, pp. 4184-4202, 2016.
[21] R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage, Nature materials, Vol. 14, No. 3, pp. 271-279, 2015.
[22] W. Lv, Z. Li, Y. Deng, Q.-H. Yang, F. Kang, Graphene-based materials for electrochemical energy storage devices: opportunities and challenges, Energy Storage Materials, Vol. 2, pp. 107-138, 2016.
[23] R. Kurapati, K. Kostarelos, M. Prato, A. Bianco, Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead, Advanced Materials, Vol. 28, No. 29, pp. 6052-6074, 2016.
[24] E. Pomerantseva, Y. Gogotsi, Two-dimensional heterostructures for energy storage, Nature Energy, Vol. 2, No. 7, pp. 1-6, 2017.
[25] X. Ning, X. Wang, Y. Zhang, X. Yu, D. Choi, N. Zheng, D. S. Kim, Y. Huang, Y. Zhang, J. A. Rogers, Assembly of advanced materials into 3D functional structures by methods inspired by origami and kirigami: a review, Advanced Materials Interfaces, Vol. 5, No. 13, pp. 1800284, 2018.
[26] V. B. Shenoy, D. H. Gracias, Self-folding thin-film materials: From nanopolyhedra to graphene origami, Mrs Bulletin, Vol. 37, No. 9, pp. 847-854, 2012.
[27] D. T. Ho, S. Y. Kim, U. Schwingenschlögl, Graphene origami structures with superflexibility and highly tunable auxeticity, Physical Review B, Vol. 102, No. 17, pp. 174106, 2020.
[28] H. Chen, X.-L. Zhang, Y.-Y. Zhang, D. Wang, D.-L. Bao, Y. Que, W. Xiao, S. Du, M. Ouyang, S. T. Pantelides, Atomically precise, custom-design origami graphene nanostructures, Science, Vol. 365, No. 6457, pp. 1036-1040, 2019.
[29] S. Zhao, Y. Zhang, Y. Zhang, J. Yang, S. Kitipornchai, Graphene origami-enabled auxetic metallic metamaterials: an atomistic insight, International Journal of Mechanical Sciences, Vol. 212, pp. 106814, 2021.
[30] J. Cai, E. Estakhrianhaghighi, A. Akbarzadeh, Functionalized graphene origami metamaterials with tunable thermal conductivity, Carbon, Vol. 191, pp. 610-624, 2022.
[31] D. T. Ho, H. S. Park, S. Y. Kim, U. Schwingenschlögl, Graphene origami with highly tunable coefficient of thermal expansion, ACS nano, Vol. 14, No. 7, pp. 8969-8974, 2020.
[32] N. Novak, M. Vesenjak, Z. Ren, Auxetic cellular materials-a review, Strojniški vestnik-Journal of Mechanical Engineering, Vol. 62, No. 9, pp. 485-493, 2016.
[33] J. Choi, R. Lakes, Non-linear properties of metallic cellular materials with a negative Poisson's ratio, Journal of Materials Science, Vol. 27, pp. 5375-5381, 1992.
[34] V. Coenen, K. Alderson, Mechanisms of failure in the static indentation resistance of auxetic carbon fibre laminates, Physica status solidi (b), Vol. 248, No. 1, pp. 66-72, 2011.
[35] J. Choi, R. Lakes, Fracture toughness of re-entrant foam materials with a negative Poisson's ratio: experiment and analysis, International Journal of fracture, Vol. 80, pp. 73-83, 1996.
[36] R. Lakes, Foam structures with a negative Poisson's ratio, Science, Vol. 235, No. 4792, pp. 1038-1040, 1987.
[37] A. Alderson, J. Rasburn, S. Ameer-Beg, P. G. Mullarkey, W. Perrie, K. E. Evans, An auxetic filter: a tuneable filter displaying enhanced size selectivity or defouling properties, Industrial & engineering chemistry research, Vol. 39, No. 3, pp. 654-665, 2000.
[38] K. E. Evans, Auxetic polymers: a new range of materials, Endeavour, Vol. 15, No. 4, pp. 170-174, 1991.
[39] A. Alderson, K. Alderson, Auxetic materials, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 221, No. 4, pp. 565-575, 2007.
[40] G. Imbalzano, P. Tran, T. D. Ngo, P. V. Lee, Three-dimensional modelling of auxetic sandwich panels for localised impact resistance, Journal of Sandwich Structures & Materials, Vol. 19, No. 3, pp. 291-316, 2017.
[41] W. Hou, X. Yang, W. Zhang, Y. Xia, Design of energy-dissipating structure with functionally graded auxetic cellular material, International Journal of Crashworthiness, Vol. 23, No. 4, pp. 366-376, 2018.
[42] G. Imbalzano, S. Linforth, T. D. Ngo, P. V. S. Lee, P. Tran, Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs, Composite Structures, Vol. 183, pp. 242-261, 2018.
[43] F. Ebrahimi, R. Nopour, A. Dabbagh, Smart laminates with an auxetic ply rested on visco-Pasternak medium: Active control of the system’s oscillation, Engineering with Computers, pp. 1-11, 2021.
[44] F. Ebrahimi, M. F. Ahari, Thermomechanical active vibration control of auxetic plates with magnetostrictive layers, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 46, No. 1, pp. 19, 2024.
[45] M. Mahinzare, A. Rastgoo, F. Ebrahimi, Magnetic field effects on wave dispersion of piezo-electrically actuated auxetic sandwich shell via GPL reinforcement, 2023.
[46] F. Ebrahimi, M. F. Ahari, Dynamic analysis of meta-material plates with magnetostrictive face sheets, International Journal of Structural Stability and Dynamics, pp. 2450174, 2023.
[47] W. Xu, Z. Qin, C.-T. Chen, H. R. Kwag, Q. Ma, A. Sarkar, M. J. Buehler, D. H. Gracias, Ultrathin thermoresponsive self-folding 3D graphene, Science advances, Vol. 3, No. 10, pp. e1701084, 2017.
[48] K. Kim, Z. Lee, B. D. Malone, K. T. Chan, B. Alemán, W. Regan, W. Gannett, M. Crommie, M. L. Cohen, A. Zettl, Multiply folded graphene, Physical Review B, Vol. 83, No. 24, pp. 245433, 2011.
[49] N. Patra, B. Wang, P. Král, Nanodroplet activated and guided folding of graphene nanostructures, Nano letters, Vol. 9, No. 11, pp. 3766-3771, 2009.
[50] F. Guo, F. Kim, T. H. Han, V. B. Shenoy, J. Huang, R. H. Hurt, Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases, Acs Nano, Vol. 5, No. 10, pp. 8019-8025, 2011.
[51] Y. Chen, F. Guo, A. Jachak, S.-P. Kim, D. Datta, J. Liu, I. Kulaots, C. Vaslet, H. D. Jang, J. Huang, Aerosol synthesis of cargo-filled graphene nanosacks, Nano letters, Vol. 12, No. 4, pp. 1996-2002, 2012.
[52] J. Zhang, J. Xiao, X. Meng, C. Monroe, Y. Huang, J.-M. Zuo, Free folding of suspended graphene sheets by random mechanical stimulation, Physical review letters, Vol. 104, No. 16, pp. 166805, 2010.
[53] C. Zhang, C. Lu, L. Pei, J. Li, R. Wang, The wrinkling and buckling of graphene induced by nanotwinned copper matrix: A molecular dynamics study, Nano Materials Science, Vol. 3, No. 1, pp. 95-103, 2021.
[54] S. Zhao, Y. Zhang, Y. Zhang, W. Zhang, J. Yang, S. Kitipornchai, Genetic programming-assisted micromechanical models of graphene origami-enabled metal metamaterials, Acta Materialia, Vol. 228, pp. 117791, 2022.
[55] F. Ebrahimi, H. Ezzati, Dynamic analysis of thermally affected nanocomposite plates reinforced with functionalized graphene oxide nanoparticles, Acta Mechanica, pp. 1-18, 2023.
[56] S. Zhao, Y. Zhang, D. Chen, J. Yang, S. Kitipornchai, Enhanced thermal buckling resistance of folded graphene reinforced nanocomposites with negative thermal expansion: From atomistic study to continuum mechanics modelling, Composite Structures, Vol. 279, pp. 114872, 2022.
[57] J. An, A. Wang, K. Zhang, W. Zhang, L. Song, B. Xiao, R. Wang, Bending and buckling analysis of functionally graded graphene origami metamaterial irregular plates using generalized finite difference method, Results in Physics, Vol. 53, pp. 106945, 2023.
[58] B. Murari, S. Zhao, Y. Zhang, J. Yang, Static and dynamic instability of functionally graded graphene origami-enabled auxetic metamaterial beams with variable thickness in fluid, Ocean Engineering, Vol. 280, pp. 114859, 2023.
[59] Y. Lv, J. Zhang, J. Wu, L. Li, Mechanical and thermal postbuckling of functionally graded graphene origami-enabled auxetic metamaterials plates, Engineering Structures, Vol. 298, pp. 117043, 2024.
[60] Y. Chen, P. Shi, Y. Bai, J. Li, J. Feng, P. Sareh, Engineered origami crease perforations for optimal mechanical performance and fatigue life, Thin-Walled Structures, Vol. 185, pp. 110572, 2023.
[61] S. Zhao, Y. Zhang, Y. Zhang, J. Yang, S. Kitipornchai, Vibrational characteristics of functionally graded graphene origami-enabled auxetic metamaterial beams based on machine learning assisted models, Aerospace Science and Technology, Vol. 130, pp. 107906, 2022.
[62] H. Ezzati, S. Pashalou, A. Rastgoo, F. Ebrahimi, Vibration analysis of multilayer graphene origami-enabled metamaterial plates, Acta Mechanica, pp. 1-18, 2024.
[63] S. Zhao, Y. Zhang, Y. Zhang, J. Yang, S. Kitipornchai, A functionally graded auxetic metamaterial beam with tunable nonlinear free vibration characteristics via graphene origami, Thin-Walled Structures, Vol. 181, pp. 109997, 2022.
[64] H. Vali, M. Arefi, Extension of a novel higher order modeling to the vibration responses of sandwich graphene origami cylindrical panel, Archives of Civil and Mechanical Engineering, Vol. 23, No. 4, pp. 268, 2023.
[65] B. Murari, S. Zhao, Y. Zhang, J. Yang, Graphene origami-enabled auxetic metamaterial tapered beams in fluid: Nonlinear vibration and postbuckling analyses via physics-embedded machine learning model, Applied Mathematical Modelling, 2023.
[66] B. Murari, S. Zhao, Y. Zhang, L. Ke, J. Yang, Vibrational characteristics of functionally graded graphene origami-enabled auxetic metamaterial beams with variable thickness in fluid, Engineering Structures, Vol. 277, pp. 115440, 2023.
[67] F. Ebrahimi, M. Parsi, Wave propagation analysis of functionally graded graphene origami-enabled auxetic metamaterial beams resting on an elastic foundation, Acta Mechanica, Vol. 234, No. 12, pp. 6169-6190, 2023.