[1] S. U. S. Choi, J. Eastman, 1995, Enhancing thermal conductivity of fluids with nanoparticles,
[2] J. Akram, N. Akbar, D. Tripathi, Analysis of Electroosmotic Flow of Silver-Water Nanofluid Regulated by Peristalsis Using Two Different Approaches for Nanofluid, Journal of Computational Science, Vol. 62, pp. 101696, 05/01, 2022.
[3] S. Z. Alamri, R. Ellahi, N. Shehzad, A. Zeeshan, Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: An application of Stefan blowing, Journal of Molecular Liquids, Vol. 273, pp. 292-304, 2019/01/01/, 2019.
[4] F. Selimefendigil, H. Öztop, M. Doranehgard, N. Karimi, Phase change dynamics in a cylinder containing hybrid nanofluid and phase change material subjected to a rotating inner disk, The Journal of Energy Storage, Vol. 42, pp. 103007, 10/01, 2021.
[5] P. Gholamalipour, M. Siavashi, M. H. Doranehgard, Eccentricity effects of heat source inside a porous annulus on the natural convection heat transfer and entropy generation of Cu-water nanofluid, International Communications in Heat and Mass Transfer, Vol. 109, pp. 104367, 2019/12/01/, 2019.
[6] A. Zeeshan, R. Ellahi, M. A. Rafique, S. M. Sait, N. Shehzad, Parametric Optimization of Entropy Generation in Hybrid Nanofluid in Contracting/Expanding Channel by Means of Analysis of Variance and Response Surface Methodology, Inventions, Vol. 9, No. 5, pp. 92, 2024.
[7] F. Selimefendigil, H. Öztop, A. Chamkha, MHD mixed convection of nanofluid in a cubic cavity with a conductive partition for various nanoparticle shapes, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 29, 04/09, 2019.
[8] M. Hassan, M. I. Marin, R. Ellahi, S. Z. Alamri, EXPLORATION OF CONVECTIVE HEAT TRANSFER AND FLOW CHARACTERISTICS SYNTHESIS BY Cu–Ag/WATER HYBRID-NANOFLUIDS, Heat Transfer Research, Vol. 49, pp. 1837-1848, 2018.
[9] M. Bhatti, A. As, T. Abbas, S. Alamri, R. Ellahi, Study of Activation Energy on the Movement of Gyrotactic Microorganism in a Magnetized Nanofluids Past a Porous Plate, Processes, Vol. 8, pp. 328, 03/11, 2020.
[10] R. Abo-Elkhair, M. M. Bhatti, K. Mekheimer, Magnetic force effects on peristaltic transport of hybrid bio-nanofluid (Au Cu nanoparticles) with moderate Reynolds number: An expanding horizon, International Communications in Heat and Mass Transfer, Vol. 123, pp. 105228, 04/01, 2021.
[11] A. Zeeshan, N. Khalid, R. Ellahi, M. Khan, S. Z. Alamri, Analysis of nonlinear complex heat transfer MHD flow of Jeffrey nanofluid over an exponentially stretching sheet via three phase artificial intelligence and Machine Learning techniques, Chaos, Solitons & Fractals, Vol. 189, pp. 115600, 2024.
[12] R. Ellahi, The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions, Applied Mathematical Modelling, Vol. 37, No. 3, pp. 1451-1467, 2013/02/01/, 2013.
[13] M. Turgay, A. Yazıcıoğlu, Numerical simulation of fluid flow and heat transfer in a trapezoidal microchannel with COMSOL multiphysics: A case study, Numerical Heat Transfer, Part A: Applications, Vol. 73, pp. 1-15, 02/22, 2018.
[14] Z. Malikov, M. Madaliev, S. Chernyshev, A. Ionov, Validation of a two-fluid turbulence model in comsol multiphysics for the problem of flow around aerodynamic profiles, Scientific Reports, Vol. 14, 01/27, 2024.
[15] S.-R. Yan, D. Toghraie, L. Abdulkareem, A. a. Alizadeh, P. Barnoon, M. Afrand, The rheological behavior of MWCNTs–ZnO/Water–Ethylene glycol hybrid non-Newtonian nanofluid by using of an experimental investigation, Journal of Materials Research and Technology, Vol. 9, pp. 8401-8406, 07/01, 2020.
[16] U. S. Mahabaleshwar, G. P. Vanitha, L. M. Pérez, O. Manca, An MHD flow of non-Newtonian fluids with CNTs and heat transfer across a linearly shrinking sheet with slip and Biot number, Journal of Magnetism and Magnetic Materials, Vol. 577, pp. 170764, 2023/07/01/, 2023.
[17] H. Chahregh, S. Dinarvand, TiO 2 -Ag/blood hybrid nanofluid flow through an artery with applications of drug delivery and blood circulation in the respiratory system, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. ahead-of-print, 03/02, 2020.
[18] I. Shahzadi, S. Bilal, A significant role of permeability on blood flow for hybrid nanofluid through bifurcated stenosed artery: Drug delivery application, Computer Methods and Programs in Biomedicine, Vol. 187, pp. 105248, 2020/04/01/, 2020.
[19] H. Basha, K. Rajagopal, N. Ahammad, S. Ss, S. Gunakala, Finite Difference Computation of Au-Cu/Magneto-Bio-Hybrid Nanofluid Flow in an Inclined Uneven Stenosis Artery, Complexity, Vol. 2022, pp. 1-18, 04/12, 2022.
[20] A. Ali, F. Mebarek-Oudina, A. Barman, S. Das, A. Ismail, Peristaltic transportation of hybrid nano-blood through a ciliated micro-vessel subject to heat source and Lorentz force, Journal of Thermal Analysis and Calorimetry, 05/29, 2023.
[21] A. Elelamy, N. Elgazery, R. Ellahi, Blood flow of MHD non-Newtonian nanofluid with heat transfer and slip effects: Application of bacterial growth in heart valve, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. ahead-of-print, 03/05, 2020.
[22] A. Riaz, E. Bobescu, K. Ramesh, R. Ellahi, Entropy Analysis for Cilia-Generated Motion of Cu-Blood Flow of Nanofluid in an Annulus, Symmetry, Vol. 13, No. 12, pp. 2358, 2021.
[23] H. Waqas, U. Farooq, T. Muhammad, U. Manzoor, Importance of shape factor in Sisko nanofluid flow considering gold nanoparticles, Alexandria Engineering Journal, Vol. 61, No. 5, pp. 3665-3672, 2022/05/01/, 2022.
[24] T. Elnaqeeb, N. A. Shah, K. Mekheimer, Hemodynamic Characteristics of Gold Nanoparticle Blood Flow Through a Tapered Stenosed Vessel with Variable Nanofluid Viscosity, BioNanoScience, Vol. 9, 06/01, 2019.
[25] U. Khan, A. Zaib, A. Ishak, Magnetic Field Effect on Sisko Fluid Flow Containing Gold Nanoparticles through a Porous Curved Surface in the Presence of Radiation and Partial Slip, Mathematics, 04/21, 2021.
[26] D. Salvi, D. Boldor, G. M. Aita, C. M. Sabliov, COMSOL Multiphysics model for continuous flow microwave heating of liquids, Journal of Food Engineering, Vol. 104, No. 3, pp. 422-429, 2011/06/01/, 2011.
[27] B. Sezgin, G. Dilara, Caglayan, Y. Devrim, T. Steenberg, I. Eroglu, Modeling and sensitivity analysis of high temperature PEM fuel cells by using Comsol Multiphysics, International Journal of Hydrogen Energy, Vol. 41, 04/19, 2016.
[28] T. Adam, U. Hashim, COMSOL Multiphysics Simulation in Biomedical Engineering, Advanced Materials Research, Vol. 832, pp. 511-516, 11/01, 2013.
[29] M. Maliki, N. Laredj, K. Bendani, H. Missoum, Two-Dimensional Transient Modeling of Energy and Mass Transfer in Porous Building Components using COMSOL Multiphysics, Journal of Applied Fluid Mechanics, Vol. 10, pp. 319-328, 01/01, 2017.
[30] S. Salem, V. Tuchin, Numerical Simulation of Blood Flow in a Vessel by Using COMSOL Multiphysics® Software, Annual Research & Review in Biology, pp. 76-82, 09/02, 2020.
[31] W. Wijayanti, Musyaroh, M. N. Sasongko, R. Kusumastuti, Sasmoko, Modelling analysis of pyrolysis process with thermal effects by using Comsol Multiphysics, Case Studies in Thermal Engineering, Vol. 28, pp. 101625, 2021/12/01/, 2021.
[32] A. Hussain, A. Hassan, Q. A. Mdallal, H. Ahmad, E. M. Sherif, A. Rehman, M. Arshad, Comsolic solution of an elliptic cylindrical compressible fluid flow, Sci Rep, Vol. 11, No. 1, pp. 20030, Oct 8, 2021. eng
[33] A. Ganie, A. Ali, M. Memon, A. Albugami, K. Bhatti, I. Khan, Numerical analysis of laminar flow and heat transfer through a rectangular channel containing perforated plate at different angles, Energy Reports, Vol. 8, pp. 539-550, 12/20, 2021.
[34] S. Tarafder, M. Mia, 2022, Comparative Numerical Simulation of Laminar Flow Through Pipe Using COMSOL Multiphysics and OpenFOAM,
[35] J. C. Marín B., C. J. Amaya C., O. M. Ayala H., O. F. Ayala, M. Ayala, Numerical Study of the Velocity Profiles in an Incompressible Laminar Flow With Particles Between Two Parallel Plates, in Proceeding of, V009T10A051.
[36] A. Ali, M. Memon, K. Bhatti, K. Jacob, T. Sitthiwirattham, C. Promsakon, I. Khan, Modelling and Simulation of Fluid Flow through a Circular Cylinder with High Reynolds Number: A COMSOL Multiphysics Study, Journal of Mathematics, Vol. 2022, pp. 1-9, 05/19, 2022.
[37] G. Fatima, A. A. Khan, R. Ellahi, S. M. Sait, On hydromagnetic two-phase gas-liquid flow in ciliary channel: An application of a metachronal rhythm, Chinese Journal of Physics, Vol. 92, pp. 1435-1446, 2024/12/01/, 2024.
[38] I. K. Iliev, A. R. Gizzatullin, A. A. Filimonova, N. D. Chichirova, I. H. Beloev, Numerical Simulation of Processes in an Electrochemical Cell Using COMSOL Multiphysics, Energies, Vol. 16, No. 21, pp. 7265, 2023.
[39] S. Z. Alamri, A. A. Khan, M. Azeez, R. Ellahi, Effects of mass transfer on MHD second grade fluid towards stretching cylinder: A novel perspective of Cattaneo–Christov heat flux model, Physics Letters A, Vol. 383, No. 2, pp. 276-281, 2019/01/12/, 2019.
[40] M. Turkyilmazoglu, An analytical treatment for the exact solutions of MHD flow and heat over two–three dimensional deforming bodies, International Journal of Heat and Mass Transfer, Vol. 90, pp. 781-789, 2015/11/01/, 2015.
[41] R. Ellahi, S. Alamri, A. Majeed, Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation, Journal of Taibah University for Science, Vol. 12, pp. 1-7, 06/14, 2018.
[42] K. Sharma, N. Vijay, O. Makinde, S. B. Bhardwaj, F. Mabood, Boundary layer flow with forced convective heat transfer and viscous dissipation past a porous rotating disk, Chaos Solitons & Fractals, Vol. 148, pp. 111055, 05/31, 2021.
[43] F. Ishtiaq, R. Ellahi, M. M. Bhatti, S. Sait, Convective heat transfer with Hall current using magnetized non-Newtonian Carreau fluid model on the cilia-attenuated flow, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 34, 07/16, 2024.
[44] S. O. Adesanya, E. O. Oluwadare, J. A. Falade, O. Makinde, Hydromagnetic natural convection flow between vertical parallel plates with time-periodic boundary conditions, Journal of Magnetism and Magnetic Materials, Vol. 396, 07/01, 2015.
[45] A. Zeeshan, M. Imran Khan, R. Ellahi, D. Asghar, Artificial neural network simulation and sensitivity analysis for optimal thermal transport of magnetic viscous fluid over shrinking wedge via RSM, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 33, 07/07, 2023.
[46] W. U. Hassan, K. Shabbir, A. Zeeshan, R. Ellahi, Regression analysis for thermal transport of fractional-order magnetohydrodynamic Maxwell fluid flow under the influence of chemical reaction using integrated machine learning approach, Chaos, Solitons & Fractals, Vol. 191, pp. 115927, 2025/02/01/, 2025.
[47] A. R. Ajaykumar, P. Kumar, F. Almeida, B. Nagaraja, Q. Al-Mdallal, Sensitivity analysis and response surface methodology for entropy optimization in the exponentially stretching stratified curved sheet for Casson–Williamson nanofluid flow, International Journal of Thermofluids, Vol. 22, pp. 100668, 2024/05/01/, 2024.
[48] A. Zeeshan, H. Javed, N. Shehzad, S. Sait, R. Ellahi, An integrated numerical and analytical investigation on cilia-generated MHD flow of Jeffrey fluid through a porous medium, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 34, 08/30, 2024.