Geometric configuration and parametric evaluation of auxetic meta-materials for enhanced plastic energy dissipation in blast scenarios

Document Type : Research Paper

Authors

1 Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India

2 Indian Oil Corporation Limited, Coimbatore

3 School of Industrial Engineering, Grenoble Institute of Technology, Grenoble, France

Abstract

The prevailing risk factors and explosion scenarios in Electric Vehicles (EVs) necessitated this research to focus on the analysis and optimization of auxetic patterns encompassing re-entrant, double re-entrant, and triangular structures under blast loading conditions. In this study, a comprehensive blast analysis has been conducted numerically using ABAQUS on auxetic meta-materials featuring re-entrant, double re-entrant, and triangular structures with varying strut angles (85°, 80°, 75°) and strut thickness. Their performances have been compared among them and also with a traditional solid plate. Among these auxetic structures, the double re-entrant structure with 85o strut angle and 0.2 mm strut thickness outperformed other auxetic structures with a minimal bottom plate displacement of 3.4 mm and plastic dissipation energy of 0.171 kJ. The consistent behavior of these structures has been substantiated by conducting blast analysis with a reduced stand-off distance of 30 mm. The simulation results are then compared with the results of the 50 mm stand-off distance for deformation, plastic dissipation energy, and velocity.

Keywords

Main Subjects

[1]    A. A. Zadpoor, Mechanical meta-materials, Materials Horizons, Vol. 3, No. 5, pp. 371-381, 2016. 
[2]    J. O. Cardoso, J. P. Borges, A. Velhinho, Structural metamaterials with negative mechanical/thermomechanical indices: a review, Progress in Natural Science: Materials International, Vol. 31, No. 6, pp. 801-808, 2021. 
[3]    X. Ren, R. Das, P. Tran, T. D. Ngo, Y. M. Xie, Auxetic metamaterials and structures: a review, Smart materials and structures, Vol. 27, No. 2, pp. 023001, 2018. 
[4]    K. K. Saxena, R. Das, E. P. Calius, Three decades of auxetics research− materials with negative Poisson's ratio: a review, Advanced Engineering Materials, Vol. 18, No. 11, pp. 1847-1870, 2016. 
[5]    J. U. Surjadi, L. Gao, H. Du, X. Li, X. Xiong, N. X. Fang, Y. Lu, Mechanical metamaterials and their engineering applications, Advanced Engineering Materials, Vol. 21, No. 3, pp. 1800864, 2019. 
[6]    M. Balan, J. Mertens, M. R. Bahubalendruni, Auxetic mechanical metamaterials and their futuristic developments: A state-of-art review, Materials Today Communications, Vol. 34, pp. 105285, 2023. 
[7]    C. Lu, M. Hsieh, Z. Huang, C. Zhang, Y. Lin, Q. Shen, F. Chen, L. Zhang, Architectural design and additive manufacturing of mechanical metamaterials: a review, Engineering, Vol. 17, pp. 44-63, 2022. 
[8]    X. Yu, J. Zhou, H. Liang, Z. Jiang, L. Wu, Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Progress in Materials Science, Vol. 94, pp. 114-173, 2018. 
[9]    M. Wan, K. Yu, H. Sun, 4D printed programmable auxetic metamaterials with shape memory effects, Composite Structures, Vol. 279, pp. 114791, 2022. 
[10]    X. Xin, L. Liu, Y. Liu, J. Leng, 4D printing auxetic metamaterials with tunable, programmable, and reconfigurable mechanical properties, Advanced Functional Materials, Vol. 30, No. 43, pp. 2004226, 2020. 
[11]    X. Li, L. Gao, W. Zhou, Y. Wang, Y. Lu, Novel 2D metamaterials with negative Poisson’s ratio and negative thermal expansion, Extreme Mechanics Letters, Vol. 30, pp. 100498, 2019. 
[12]    L. Wu, B. Li, J. Zhou, Isotropic negative thermal expansion metamaterials, ACS applied materials & interfaces, Vol. 8, No. 27, pp. 17721-17727, 2016. 
[13]    X. Ren, J. Shen, P. Tran, T. D. Ngo, Y. M. Xie, Design and characterisation of a tuneable 3D buckling-induced auxetic metamaterial, Materials & Design, Vol. 139, pp. 336-342, 2018. 
[14]    L. Ai, X.-L. Gao, Three-dimensional metamaterials with a negative Poisson's ratio and a non-positive coefficient of thermal expansion, International Journal of Mechanical Sciences, Vol. 135, pp. 101-113, 2018. 
[15]    S. Shan, S. H. Kang, Z. Zhao, L. Fang, K. Bertoldi, Design of planar isotropic negative Poisson’s ratio structures, Extreme Mechanics Letters, Vol. 4, pp. 96-102, 2015. 
[16]    F. Tarlochan, Sandwich structures for energy absorption applications: A review, Materials, Vol. 14, No. 16, pp. 4731, 2021. 
[17]    Y. Luo, K. Yuan, L. Shen, J. Liu, Sandwich panel with in-plane honeycombs in different Poisson's ratio under low to medium impact loads, Reviews on Advanced Materials Science, Vol. 60, No. 1, pp. 145-157, 2021. 
[18]    G. Imbalzano, P. Tran, T. D. Ngo, P. V. Lee, Three-dimensional modelling of auxetic sandwich panels for localised impact resistance, Journal of Sandwich Structures & Materials, Vol. 19, No. 3, pp. 291-316, 2017. 
[19]    J. Michalski, T. Strek, Response of a sandwich plate with auxetic anti-tetrachiral core to puncture, in Proceeding of, Springer, pp. 1-14. 
[20]    S. Yue, Y. Bai, Z. Du, H. Zou, W. Shi, G. Zheng, Dynamic behavior of kinetic projectile impact on honeycomb sandwich panels and multi-layer plates, Crystals, Vol. 12, No. 5, pp. 572, 2022. 
[21]    G. Imbalzano, P. Tran, T. D. Ngo, P. V. Lee, A numerical study of auxetic composite panels under blast loadings, Composite Structures, Vol. 135, pp. 339-352, 2016. 
[22]    S. M. Soleimani, N. H. Ghareeb, N. H. Shaker, M. B. Siddiqui, Modeling and simulation of honeycomb steel sandwich panels under blast loading, International Journal of Civil and Environmental Engineering, Vol. 10, No. 8, pp. 1012-1021, 2016. 
[23]    K. Zheng, Z. Wang, Numerical investigation on failure behavior of steel plate under explosive loading, Science China Technological Sciences, Vol. 64, No. 6, pp. 1311-1324, 2021. 
[24]    F. Arifurrahman, R. Critchley, I. Horsfall, Experimental and numerical study of auxetic sandwich panels on 160 grams of PE4 blast loading, Journal of Sandwich Structures & Materials, Vol. 23, No. 8, pp. 3902-3931, 2021. 
[25]    H. Lin, C. Han, L. Yang, L. Zhang, H. Luan, P. Han, H. Xu, S. Zhang, Numerical investigation on performance optimization of offshore sandwich blast walls with different honeycomb cores subjected to blast loading, Journal of Marine Science and Engineering, Vol. 10, No. 11, pp. 1743, 2022. 
[26]    S. Yao, Z. Wang, D. Zhang, F. Lu, N. Zhao, Y. Wang, Damage evaluation and prediction of steel box structures under internal blast, Journal of Mechanical Science and Technology, Vol. 36, No. 10, pp. 5125-5133, 2022. 
[27]    N. Novak, L. Starčevič, M. Vesenjak, Z. Ren, Blast response study of the sandwich composite panels with 3D chiral auxetic core, Composite Structures, Vol. 210, pp. 167-178, 2019. 
[28]    H. N. Wadley, K. P. Dharmasena, M. He, R. M. McMeeking, A. G. Evans, T. Bui-Thanh, R. Radovitzky, An active concept for limiting injuries caused by air blasts, International Journal of Impact Engineering, Vol. 37, No. 3, pp. 317-323, 2010. 
[29]    A. Montazeri, A. Saeedi, E. Bahmanpour, M. Safarabadi, Enhancing the compressive properties of re-entrant honeycombs by line defects with insight from nature, Materials Today Communications, Vol. 38, pp. 107700, 2024. 
[30]    M. R. Hajighasemi, M. Safarabadi, A. Sheidaei, M. Baghani, M. Baniassadi, Design and manufacture of a smart macro-structure with changeable effective stiffness, International Journal of Applied Mechanics, Vol. 12, No. 01, pp. 2050001, 2020. 
[31]    A. Montazeri, A. Hasani, M. Safarabadi, Bending performance and failure mechanism of 3D-printed hybrid geometry honeycombs with various poisson’s ratios, Journal of Sandwich Structures & Materials, Vol. 25, No. 7, pp. 709-729, 2023. 
[32]    M. H. Fatahi, M. Hamedi, M. Safarabadi, Experimental and numerical implementation of auxetic substrate for enhancing voltage of piezoelectric sandwich beam harvester, Mechanics of Advanced Materials and Structures, Vol. 29, No. 27, pp. 6107-6117, 2022. 
[33]    D. Prakash, G. Jeyakumar, A Review of Problem Variants and Approaches for Electric Vehicle Charging and Location Identification, Research Reports on Computer Science, pp. 65-76, 2023. 
[34]    O. f. B. D. M. A. C. S. o. T.-w. C. i. C. City, V. Athira, Kichu Mariam John and L. Nitha, International Journal of Pure and Applied Mathematics, Vol. 119, No. 10, pp. 759-774, 2018. 
[35]    B. Rohini, D. M. Pavuluri, N. K. LS, V. Soorya, N. Mohankumar, Technology Manoevering in Smart Vehicles for Safe Commute, in Proceeding of, IEEE, pp. 617-622. 
[36]    A. J. Damahe, C. Sumesh, A. Ramesh, Empirical relationship for fracture energy in machining processes: a FEM-based investigation with AISI 1045 steel, International Journal on Interactive Design and Manufacturing (IJIDeM), pp. 1-9, 2023. 
[37]    A. Ramesh, C. Sumesh, P. Abhilash, S. Rakesh, Finite element modelling of orthogonal machining of hard to machine materials, International Journal of Machining and Machinability of Materials, Vol. 17, No. 6, pp. 543-568, 2015. 
[38]    V. Karlos, G. Solomos, Calculation of blast loads for application to structural components, Luxembourg: Publications Office of the European Union, Vol. 5, 2013. 
[39]    C. Zhao, J. Sun, Q. Wang, Thermal runaway hazards investigation on 18650 lithium-ion battery using extended volume accelerating rate calorimeter, Journal of Energy Storage, Vol. 28, pp. 101232, 2020. 
Volume 56, Issue 1
January 2025
Pages 127-144
  • Receive Date: 21 May 2024
  • Revise Date: 10 June 2024
  • Accept Date: 12 June 2024