[1] B. R. Thompson, T. S. Horozov, S. D. Stoyanov, V. N. Paunov, Hierarchically structured composites and porous materials from soft templates: fabrication and applications, Journal of Materials Chemistry A, Vol. 7, No. 14, pp. 8030-8049, 2019.
[2] S. Yao, J. G. Santiago, Porous glass electroosmotic pumps: theory, Journal of Colloid and Interface Science, Vol. 268, No. 1, pp. 133-142, 2003.
[3] J. De Jong, R. G. Lammertink, M. Wessling, Membranes and microfluidics: a review, Lab on a Chip, Vol. 6, No. 9, pp. 1125-1139, 2006.
[4] M. Yairi, C. Richter, Massively parallel microfluidic pump, Sensors and Actuators A: Physical, Vol. 137, No. 2, pp. 350-356, 2007.
[5] C. Zhang, D. Xing, Y. Li, Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends, Biotechnology advances, Vol. 25, No. 5, pp. 483-514, 2007.
[6] M. R. Schure, R. S. Maier, How does column packing microstructure affect column efficiency in liquid chromatography?, Journal of Chromatography A, Vol. 1126, No. 1-2, pp. 58-69, 2006.
[7] M. R. Schure, R. S. Maier, D. M. Kroll, H. T. Davis, Simulation of ordered packed beds in chromatography, Journal of Chromatography A, Vol. 1031, No. 1-2, pp. 79-86, 2004.
[8] S. Nawada, S. Dimartino, C. Fee, Dispersion behavior of 3D-printed columns with homogeneous microstructures comprising differing element shapes, Chemical Engineering Science, Vol. 164, pp. 90-98, 2017.
[9] H. Evard, H. Priks, I. Saar, H. Aavola, T. Tamm, I. Leito, A new direction in microfluidics: Printed porous materials, Micromachines, Vol. 12, No. 6, pp. 671, 2021.
[10] Y. Liao, Y. Cheng, Femtosecond laser 3d fabrication in porous glass for micro-and nanofluidic applications, Micromachines, Vol. 5, No. 4, pp. 1106-1134, 2014.
[11] Y. He, Y. Wu, J. z. Fu, Q. Gao, J. j. Qiu, Developments of 3D printing microfluidics and applications in chemistry and biology: a review, Electroanalysis, Vol. 28, No. 8, pp. 1658-1678, 2016.
[12] L. Chen, X. Guo, X. Sun, S. Zhang, J. Wu, H. Yu, T. Zhang, W. Cheng, Y. Shi, L. Pan, Porous structural microfluidic device for biomedical diagnosis: a review, Micromachines, Vol. 14, No. 3, pp. 547, 2023.
[13] H. Bakhtiari, A. Nouri, M. Khakbiz, M. Tolouei-Rad, Fatigue behaviour of load-bearing polymeric bone scaffolds: A review, Acta Biomaterialia, 2023.
[14] H. Bakhtiari, A. Nouri, M. Tolouei-Rad, Impact of 3D printing parameters on static and fatigue properties of polylactic acid (PLA) bone scaffolds, International Journal of Fatigue, pp. 108420, 2024.
[15] H. Bakhtiari, A. Nouri, M. Tolouei-Rad, Fatigue Performance of 3D-Printed Poly-Lactic-Acid Bone Scaffolds with Triply Periodic Minimal Surface and Voronoi Pore Structures, Polymers, Vol. 16, No. 15, pp. 2145, 2024.
[16] T. Chen, C. Huang, Y. Wang, J. Wu, Microfluidic methods for cell separation and subsequent analysis, Chinese Chemical Letters, Vol. 33, No. 3, pp. 1180-1192, 2022.
[17] V. Gupta, P. Nesterenko, B. Paull, 2019, 3D printing in chemical sciences: applications across chemistry, Royal Society of Chemistry,
[18] H. Bakhtiari, M. Nikzad, M. Tolouei-Rad, Influence of Three-Dimensional Printing Parameters on Compressive Properties and Surface Smoothness of Polylactic Acid Specimens, Polymers, Vol. 15, No. 18, pp. 3827, 2023.
[19] F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T. M. Nargang, C. Richter, D. Helmer, B. E. Rapp, Three-dimensional printing of transparent fused silica glass, Nature, Vol. 544, No. 7650, pp. 337-339, 2017.
[20] L. C. Hwa, S. Rajoo, A. M. Noor, N. Ahmad, M. Uday, Recent advances in 3D printing of porous ceramics: A review, Current Opinion in Solid State and Materials Science, Vol. 21, No. 6, pp. 323-347, 2017.
[21] T.-M. G. Chu, D. G. Orton, S. J. Hollister, S. E. Feinberg, J. W. Halloran, Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures, Biomaterials, Vol. 23, No. 5, pp. 1283-1293, 2002.
[22] C. Hinczewski, S. Corbel, T. Chartier, Ceramic suspensions suitable for stereolithography, Journal of the European Ceramic Society, Vol. 18, No. 6, pp. 583-590, 1998.
[23] A. Licciulli, C. E. Corcione, A. Greco, V. Amicarelli, A. Maffezzoli, Laser stereolithography of ZrO2 toughened Al2O3, Journal of the European Ceramic Society, Vol. 25, No. 9, pp. 1581-1589, 2005.
[24] C. Inamura, M. Stern, D. Lizardo, P. Houk, N. Oxman, Additive manufacturing of transparent glass structures, 3D Printing and Additive Manufacturing, Vol. 5, No. 4, pp. 269-283, 2018.
[25] F. Kotz, N. Schneider, A. Striegel, A. Wolfschläger, N. Keller, M. Worgull, W. Bauer, D. Schild, M. Milich, C. Greiner, Glassomer—processing fused silica glass like a polymer, Advanced Materials, Vol. 30, No. 22, pp. 1707100, 2018.
[26] D. G. Moore, L. Barbera, K. Masania, A. R. Studart, Three-dimensional printing of multicomponent glasses using phase-separating resins, Nature materials, Vol. 19, No. 2, pp. 212-217, 2020.
[27] Z. Li, Y. Jia, K. Duan, R. Xiao, J. Qiao, S. Liang, S. Wang, J. Chen, H. Wu, Y. Lu, One-photon three-dimensional printed fused silica glass with sub-micron features, Nature Communications, Vol. 15, No. 1, pp. 2689, 2024.
[28] O. Diegel, A. Withell, D. de Beer, J. Potgieter, F. K. Noble, Low-Cost 3D Printing of Controlled Porosity Ceramic Parts, Int. J. Autom. Technol., Vol. 6, No. 5, pp. 618-626, 2012.
[29] A. K. Au, W. Huynh, L. F. Horowitz, A. Folch, 3D‐printed microfluidics, Angewandte Chemie International Edition, Vol. 55, No. 12, pp. 3862-3881, 2016.
[30] A. Butscher, M. Bohner, S. Hofmann, L. Gauckler, R. Müller, Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing, Acta biomaterialia, Vol. 7, No. 3, pp. 907-920, 2011.
[31] S. C. Jacobson, R. Hergenroder, L. B. Koutny, J. M. Ramsey, High-speed separations on a microchip, Analytical chemistry, Vol. 66, No. 7, pp. 1114-1118, 1994.
[32] C. Chen, B. T. Mehl, A. S. Munshi, A. D. Townsend, D. M. Spence, R. S. Martin, 3D-printed microfluidic devices: fabrication, advantages and limitations—a mini review, Analytical Methods, Vol. 8, No. 31, pp. 6005-6012, 2016.