Advances, Limitations, and Future Perspectives in 3D Printing of Porous Glasses: A Technical Note

Document Type : Research Paper

Authors

1 Center for Advanced Materials and Manufacturing (CAMM), School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia

2 Department of Mechanical Engineering, Islamic Azad university,Badroud branch, Badroud, Iran

3 Department of Mechanical Engineering, University of Hormozgan, Bandar Abbas, Hormozgan, Iran

4 Makkoran Research Center, University of Hormozgan, Bandar Abbas, Hormozgan, Iran

Abstract

In this study, the latest developments in 3D printing of porous glasses are discussed. Current challenges in 3D printing of porous-based microfluidic devices mostly include the printing resolution which is correlated with the processing time, post treating, and developing tailored materials for porous glasses. Although the latter issue has been resolved to some extent recently, the former has remained a challenge. Currently, the smallest 3D printed feature in a microfluidic structure is 200µm while higher resolutions are required in some applications. On the other hand, previous reports have shown intensive printing time for higher resolutions. To achieve an optimal compromise, further investigations and technological advancements in the printing technology should be carried out. An extrusion-based 3D printing system “G3DP2” developed by MIT researchers enables the printing of porous glasses by controlling the heating and cooling cycles. The other important challenge is related to the printable glass materials. Recently, newly developed materials such as ceramic-based resins and “Glassomer” that contains fine glass powders in a plastic binder matrix, has enabled the fabrication of porous glasses by resin 3D printing systems.

Keywords

Main Subjects

[1]    B. R. Thompson, T. S. Horozov, S. D. Stoyanov, V. N. Paunov, Hierarchically structured composites and porous materials from soft templates: fabrication and applications, Journal of Materials Chemistry A, Vol. 7, No. 14, pp. 8030-8049, 2019. 
[2]    S. Yao, J. G. Santiago, Porous glass electroosmotic pumps: theory, Journal of Colloid and Interface Science, Vol. 268, No. 1, pp. 133-142, 2003. 
[3]    J. De Jong, R. G. Lammertink, M. Wessling, Membranes and microfluidics: a review, Lab on a Chip, Vol. 6, No. 9, pp. 1125-1139, 2006. 
[4]    M. Yairi, C. Richter, Massively parallel microfluidic pump, Sensors and Actuators A: Physical, Vol. 137, No. 2, pp. 350-356, 2007. 
[5]    C. Zhang, D. Xing, Y. Li, Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends, Biotechnology advances, Vol. 25, No. 5, pp. 483-514, 2007. 
[6]    M. R. Schure, R. S. Maier, How does column packing microstructure affect column efficiency in liquid chromatography?, Journal of Chromatography A, Vol. 1126, No. 1-2, pp. 58-69, 2006. 
[7]    M. R. Schure, R. S. Maier, D. M. Kroll, H. T. Davis, Simulation of ordered packed beds in chromatography, Journal of Chromatography A, Vol. 1031, No. 1-2, pp. 79-86, 2004. 
[8]    S. Nawada, S. Dimartino, C. Fee, Dispersion behavior of 3D-printed columns with homogeneous microstructures comprising differing element shapes, Chemical Engineering Science, Vol. 164, pp. 90-98, 2017. 
[9]    H. Evard, H. Priks, I. Saar, H. Aavola, T. Tamm, I. Leito, A new direction in microfluidics: Printed porous materials, Micromachines, Vol. 12, No. 6, pp. 671, 2021. 
[10]    Y. Liao, Y. Cheng, Femtosecond laser 3d fabrication in porous glass for micro-and nanofluidic applications, Micromachines, Vol. 5, No. 4, pp. 1106-1134, 2014. 
[11]    Y. He, Y. Wu, J. z. Fu, Q. Gao, J. j. Qiu, Developments of 3D printing microfluidics and applications in chemistry and biology: a review, Electroanalysis, Vol. 28, No. 8, pp. 1658-1678, 2016. 
[12]    L. Chen, X. Guo, X. Sun, S. Zhang, J. Wu, H. Yu, T. Zhang, W. Cheng, Y. Shi, L. Pan, Porous structural microfluidic device for biomedical diagnosis: a review, Micromachines, Vol. 14, No. 3, pp. 547, 2023. 
[13]    H. Bakhtiari, A. Nouri, M. Khakbiz, M. Tolouei-Rad, Fatigue behaviour of load-bearing polymeric bone scaffolds: A review, Acta Biomaterialia, 2023. 
[14]    H. Bakhtiari, A. Nouri, M. Tolouei-Rad, Impact of 3D printing parameters on static and fatigue properties of polylactic acid (PLA) bone scaffolds, International Journal of Fatigue, pp. 108420, 2024. 
[15]    H. Bakhtiari, A. Nouri, M. Tolouei-Rad, Fatigue Performance of 3D-Printed Poly-Lactic-Acid Bone Scaffolds with Triply Periodic Minimal Surface and Voronoi Pore Structures, Polymers, Vol. 16, No. 15, pp. 2145, 2024. 
[16]    T. Chen, C. Huang, Y. Wang, J. Wu, Microfluidic methods for cell separation and subsequent analysis, Chinese Chemical Letters, Vol. 33, No. 3, pp. 1180-1192, 2022. 
[17]    V. Gupta, P. Nesterenko, B. Paull, 2019, 3D printing in chemical sciences: applications across chemistry, Royal Society of Chemistry, 
[18]    H. Bakhtiari, M. Nikzad, M. Tolouei-Rad, Influence of Three-Dimensional Printing Parameters on Compressive Properties and Surface Smoothness of Polylactic Acid Specimens, Polymers, Vol. 15, No. 18, pp. 3827, 2023. 
[19]    F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T. M. Nargang, C. Richter, D. Helmer, B. E. Rapp, Three-dimensional printing of transparent fused silica glass, Nature, Vol. 544, No. 7650, pp. 337-339, 2017. 
[20]    L. C. Hwa, S. Rajoo, A. M. Noor, N. Ahmad, M. Uday, Recent advances in 3D printing of porous ceramics: A review, Current Opinion in Solid State and Materials Science, Vol. 21, No. 6, pp. 323-347, 2017. 
[21]    T.-M. G. Chu, D. G. Orton, S. J. Hollister, S. E. Feinberg, J. W. Halloran, Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures, Biomaterials, Vol. 23, No. 5, pp. 1283-1293, 2002. 
[22]    C. Hinczewski, S. Corbel, T. Chartier, Ceramic suspensions suitable for stereolithography, Journal of the European Ceramic Society, Vol. 18, No. 6, pp. 583-590, 1998. 
[23]    A. Licciulli, C. E. Corcione, A. Greco, V. Amicarelli, A. Maffezzoli, Laser stereolithography of ZrO2 toughened Al2O3, Journal of the European Ceramic Society, Vol. 25, No. 9, pp. 1581-1589, 2005. 
[24]    C. Inamura, M. Stern, D. Lizardo, P. Houk, N. Oxman, Additive manufacturing of transparent glass structures, 3D Printing and Additive Manufacturing, Vol. 5, No. 4, pp. 269-283, 2018. 
[25]    F. Kotz, N. Schneider, A. Striegel, A. Wolfschläger, N. Keller, M. Worgull, W. Bauer, D. Schild, M. Milich, C. Greiner, Glassomer—processing fused silica glass like a polymer, Advanced Materials, Vol. 30, No. 22, pp. 1707100, 2018. 
[26]    D. G. Moore, L. Barbera, K. Masania, A. R. Studart, Three-dimensional printing of multicomponent glasses using phase-separating resins, Nature materials, Vol. 19, No. 2, pp. 212-217, 2020. 
[27]    Z. Li, Y. Jia, K. Duan, R. Xiao, J. Qiao, S. Liang, S. Wang, J. Chen, H. Wu, Y. Lu, One-photon three-dimensional printed fused silica glass with sub-micron features, Nature Communications, Vol. 15, No. 1, pp. 2689, 2024. 
[28]    O. Diegel, A. Withell, D. de Beer, J. Potgieter, F. K. Noble, Low-Cost 3D Printing of Controlled Porosity Ceramic Parts, Int. J. Autom. Technol., Vol. 6, No. 5, pp. 618-626, 2012. 
[29]    A. K. Au, W. Huynh, L. F. Horowitz, A. Folch, 3D‐printed microfluidics, Angewandte Chemie International Edition, Vol. 55, No. 12, pp. 3862-3881, 2016. 
[30]    A. Butscher, M. Bohner, S. Hofmann, L. Gauckler, R. Müller, Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing, Acta biomaterialia, Vol. 7, No. 3, pp. 907-920, 2011. 
[31]    S. C. Jacobson, R. Hergenroder, L. B. Koutny, J. M. Ramsey, High-speed separations on a microchip, Analytical chemistry, Vol. 66, No. 7, pp. 1114-1118, 1994. 
[32]    C. Chen, B. T. Mehl, A. S. Munshi, A. D. Townsend, D. M. Spence, R. S. Martin, 3D-printed microfluidic devices: fabrication, advantages and limitations—a mini review, Analytical Methods, Vol. 8, No. 31, pp. 6005-6012, 2016. 
Volume 56, Issue 1
January 2025
Pages 69-75
  • Receive Date: 06 August 2024
  • Revise Date: 25 November 2024
  • Accept Date: 25 November 2024