Transforming Medical Manufacturing: Groundbreaking Innovations Redefining Healthcare

Document Type : Research Paper

Authors

1 Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ, 07030, USA

2 Department of Mechanical & Biomedical Engineering, Boise State University, Boise, ID, USA

3 Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy

Abstract

This paper presents a thorough examination of recent progressions in additive manufacturing (AM) methodologies utilized within the biomedical realm, with particular attention to tissue engineering. Additive manufacturing provides exceptional precision in producing intricate three-dimensional objects using a variety of materials. Techniques such as Jetting, Material Extrusion, Material Jetting, Powder Bed Fusion, Sheet Lamination, and Vat Polymerization are strategically employed in biomedical applications to fulfill specific component requirements. Our focus is on polymer materials, encompassing both natural and synthetic variants, exploring the use of hydrogels for scaffold fabrication. We critically analyze the mechanical properties of these polymer scaffolds to enhance personalized patient care and mitigate implantation risks. Through careful adjustment of process parameters, this study illustrates the feasibility of achieving improved mechanical properties in manufactured components. This comprehensive review contributes to the ongoing discussion on advanced manufacturing methods for polymeric scaffolds in medical contexts, offering valuable insights for researchers, practitioners, and industry experts.

Keywords

Main Subjects

[1]    R. Shrinivas Mahale, V. Shamanth, K. Hemanth, S. K. Nithin, P. C. Sharath, R. Shashanka, A. Patil, D. Shetty, Processes and applications of metal additive manufacturing, Materials Today: Proceedings, Vol. 54, pp. 228-233, 2022/01/01/, 2022. 
[2]    R. Velu, M. K. Ramachandran, S. Anand Kumar, State‐of‐the‐Art Overview and Recent Trends in Additive Manufacturing: Opportunities, Limitations, and Current Market, Nanotechnology‐Based Additive Manufacturing: Product Design, Properties and Applications, Vol. 1, pp. 1-25, 2023. 
[3]    C. J. Gil, C. J. Evans, L. Li, A. J. Allphin, M. L. Tomov, L. Jin, M. Vargas, B. Hwang, J. Wang, V. Putaturo, Leveraging 3D Bioprinting and Photon‐Counting Computed Tomography to Enable Noninvasive Quantitative Tracking of Multifunctional Tissue Engineered Constructs, Advanced Healthcare Materials, Vol. 12, No. 31, pp. 2302271, 2023. 
[4]    A. Farazin, C. Zhang, A. Gheisizadeh, A. Shahbazi, 3D bio-printing for use as bone replacement tissues: A review of biomedical application, Biomedical Engineering Advances, Vol. 5, pp. 100075, 2023. 
[5]    A. Das, T. Medhi, S. Kapil, P. Biswas, Different build strategies and computer-aided process planning for fabricating a functional component through hybrid-friction stir additive manufacturing, International Journal of Computer Integrated Manufacturing, Vol. 37, No. 3, pp. 350-371, 2024. 
[6]    H. Hegab, N. Khanna, N. Monib, A. Salem, Design for sustainable additive manufacturing: A review, Sustainable Materials and Technologies, Vol. 35, pp. e00576, 2023. 
[7]    Y. Jiang, M. N. Islam, R. He, X. Huang, P. F. Cao, R. C. Advincula, N. Dahotre, P. Dong, H. F. Wu, W. Choi, Recent advances in 3D printed sensors: materials, design, and manufacturing, Advanced Materials Technologies, Vol. 8, No. 2, pp. 2200492, 2023. 
[8]    R. Winarso, P. Anggoro, R. Ismail, J. Jamari, A. Bayuseno, Application of fused deposition modeling (FDM) on bone scaffold manufacturing process: a review, Heliyon, Vol. 8, No. 11, 2022. 
[9]    A. Abdullah, F. Shahabipour, A. Shaito, S. Al-Assaf, A. A. Elnour, E. B. Sallam, S. Teimourtash, A. A. Elfadil, 3D hydrogel/bioactive glass scaffolds in bone tissue engineering: Status and future opportunities, 2023. 
[10]    F. Habibzadeh, S. M. Sadraei, R. Mansoori, N. P. S. Chauhan, G. Sargazi, Nanomaterials supported by polymers for tissue engineering applications: A review, Heliyon, Vol. 8, No. 12, 2022. 
[11]    S. Kalidas, S. Sumathi, Mechanical, biocompatibility and antibacterial studies of gelatin/polyvinyl alcohol/silkfibre polymeric scaffold for bone tissue engineering, Heliyon, Vol. 9, No. 6, 2023. 
[12]    S. Tavasolikejani, A. Farazin, The effect of increasing temperature on simulated nanocomposites reinforced with SWBNNs and its effect on characteristics related to mechanics and the physical attributes using the MDs approach, Heliyon, Vol. 9, No. 10, 2023. 
[13]    A. Farazin, M. Mohammadimehr, H. Naeimi, Flexible self-healing nanocomposite based gelatin/tannic acid/acrylic acid reinforced with zinc oxide nanoparticles and hollow silver nanoparticles based on porous silica for rapid wound healing, International Journal of Biological Macromolecules, Vol. 241, pp. 124572, 2023. 
[14]    A. Farazin, F. A. Shirazi, M. Shafiei, Natural biomarocmolecule-based antimicrobial hydrogel for rapid wound healing: A review, International Journal of Biological Macromolecules, Vol. 244, pp. 125454, 2023. 
[15]    M. Y. Khalid, Z. U. Arif, R. Noroozi, M. Hossain, S. Ramakrishna, R. Umer, 3D/4D printing of cellulose nanocrystals-based biomaterials: Additives for sustainable applications, International Journal of Biological Macromolecules, pp. 126287, 2023. 
[16]    Z. Huang, G. Shao, L. Li, Micro/nano functional devices fabricated by additive manufacturing, Progress in Materials Science, Vol. 131, pp. 101020, 2023. 
[17]    A. Zarei, A. Farazin, Synergizing additive manufacturing and machine learning for advanced hydroxyapatite scaffold design in bone regeneration, Journal of the Australian Ceramic Society, 2024/08/26, 2024. 
[18]    N. Venishetty, M. Toutoungy, J. Beale, J. Martinez, D. K. Wukich, V. Mounasamy, M. H. Huo, S. Sambandam, Total hip arthroplasty in nonagenarians–a national in-patient sample-based study of perioperative complications, Geriatric Orthopaedic Surgery & Rehabilitation, Vol. 14, pp. 21514593231178624, 2023. 
[19]    P. Zarean, P. Zarean, P. Sendi, K. W. Neuhaus, Advances in the manufacturing process of space maintainers in pediatric dentistry: A systematic review from traditional methods to 3D-printing, Applied Sciences, Vol. 13, No. 12, pp. 6998, 2023. 
[20]    F. Otaola, C. de Lartigue, V. Fitzpatrick, D. Luart, M. Leturia, E. Guenin, C. Egles, Additive Manufacturing of Biomaterials, Biomaterials and Tissue Engineering, pp. 331-355, 2023. 
[21]    X. Luo, H. Cheng, X. Wu, Nanomaterials reinforced polymer filament for fused deposition modeling: a state-of-the-art review, Polymers, Vol. 15, No. 14, pp. 2980, 2023. 
[22]    M. Ramezani, Z. Mohd Ripin, 4D printing in biomedical engineering: Advancements, challenges, and future directions, Journal of functional biomaterials, Vol. 14, No. 7, pp. 347, 2023. 
[23]    S. Tavasolikejani, A. Farazin, Explore the most recent advancements in the domain of self-healing intelligent composites specifically designed for use in dentistry, Journal of the Mechanical Behavior of Biomedical Materials, pp. 106123, 2023. 
[24]    T. Mahmood, A. Shahbaz, N. Hussain, R. Ali, H. Bashir, K. Rizwan, Recent advancements in fusion protein technologies in oncotherapy: A review, International Journal of Biological Macromolecules, Vol. 230, pp. 123161, 2023. 
[25]    T. Agarwal, I. Chiesa, M. Costantini, A. Lopamarda, M. C. Tirelli, O. P. Borra, S. V. S. Varshapally, Y. A. V. Kumar, G. K. Reddy, C. De Maria, Chitosan and its derivatives in 3D/4D (bio) printing for tissue engineering and drug delivery applications, International Journal of Biological Macromolecules, pp. 125669, 2023. 
[26]    M. Yan, L. Wang, Y. Wu, L. Wang, Y. Lu, Three-dimensional highly porous hydrogel scaffold for neural circuit dissection and modulation, Acta Biomaterialia, Vol. 157, pp. 252-262, 2023. 
[27]    P. Ghandforoushan, M. Alehosseini, N. Golafshan, M. Castilho, A. Dolatshahi-Pirouz, J. Hanaee, S. Davaran, G. Orive, Injectable hydrogels for cartilage and bone tissue regeneration: A review, International Journal of Biological Macromolecules, Vol. 246, pp. 125674, 2023. 
[28]    R. Karmakar, S. Dey, A. Alam, M. Khandelwal, F. Pati, A. K. Rengan, Attributes of Nanomaterials and Nanotopographies for Improved Bone Tissue Engineering and Regeneration, ACS Applied Bio Materials, Vol. 6, No. 10, pp. 4020-4041, 2023. 
[29]    A. Farazin, S. Mahjoubi, Dual-functional Hydroxyapatite scaffolds for bone regeneration and precision drug delivery, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 157, pp. 106661, 2024/09/01/, 2024. 
[30]    J. Adhikari, A. Roy, A. Chanda, D. Gouripriya, S. Thomas, M. Ghosh, J. Kim, P. Saha, Effects of surface patterning and topography on the cellular functions of tissue engineered scaffolds with special reference to 3D bioprinting, Biomaterials Science, Vol. 11, No. 4, pp. 1236-1269, 2023. 
[31]    G. Phadke, D. Rawtani, Bioplastics as polymeric building blocks: Paving the way for greener and cleaner environment, European Polymer Journal, pp. 112453, 2023. 
[32]    A. Zarei, A. Farazin, Machine Learning Insights into the Influence of Carbon Nanotube Dimensions on Nanocomposite Properties: A Comprehensive Exploration, Journal of Computational Applied Mechanics, Vol. 55, No. 3, pp. 462-472, 2024. 
[33]    M. Ahmadi, M. Sabzini, S. Rastgordani, A. Farazin, Optimizing Wound Healing: Examining the Influence of Biopolymers Through a Comprehensive Review of Nanohydrogel-Embedded Nanoparticles in Advancing Regenerative Medicine, The International Journal of Lower Extremity Wounds, pp. 15347346241244890, 2024. 
[34]    S. F. Darghiasi, A. Farazin, H. S. Ghazali, Design of bone scaffolds with calcium phosphate and its derivatives by 3D printing: A review, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 151, pp. 106391, 2024/03/01/, 2024. 
[35]    N. Ibrahem Khaled, D. Santhiya, Zein-bioactive glass nanocomposite coating on magnesium alloy substrate for orthopedic applications, Advanced Composite Materials, Vol. 33, No. 3, pp. 324-346, 2024. 
[36]    G. Chyr, J. M. DeSimone, Review of high-performance sustainable polymers in additive manufacturing, Green Chemistry, Vol. 25, No. 2, pp. 453-466, 2023. 
[37]    N. Singh, H. Siddiqui, B. S. R. Koyalada, A. Mandal, V. Chauhan, S. Natarajan, S. Kumar, M. Goswami, S. Kumar, Recent advancements in additive manufacturing (AM) techniques: a forward-looking review, Metals and Materials International, Vol. 29, No. 8, pp. 2119-2136, 2023. 
[38]    P. Szymczyk-Ziółkowska, M. B. Łabowska, J. Detyna, I. Michalak, P. Gruber, A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques, Biocybernetics and Biomedical Engineering, Vol. 40, No. 2, pp. 624-638, 2020. 
[39]    A. Farazin, M. Mohammadimehr, H. Naeimi, F. Bargozini, Design, fabrication, and evaluation of green mesoporous hollow magnetic spheres with antibacterial activity, Materials Science and Engineering: B, Vol. 299, pp. 116973, 2024/01/01/, 2024. 
[40]    S. Li, P. Cheng, S. Ahzi, Y. Peng, K. Wang, F. Chinesta, J. Correia, Advances in hybrid fibers reinforced polymer-based composites prepared by FDM: a review on mechanical properties and prospects, Composites Communications, Vol. 40, pp. 101592, 2023. 
[41]    V. Mishra, S. Negi, S. Kar, FDM-based additive manufacturing of recycled thermoplastics and associated composites, Journal of Material Cycles and Waste Management, Vol. 25, No. 2, pp. 758-784, 2023. 
[42]    F. Shojaie, C. Ferrero, I. Caraballo, Development of 3D-Printed Bicompartmental Devices by Dual-Nozzle Fused Deposition Modeling (FDM) for Colon-Specific Drug Delivery, Pharmaceutics, Vol. 15, No. 9, pp. 2362, 2023. 
[43]    M. Moradi, R. Beygi, N. Mohd. Yusof, A. Amiri, L. Da Silva, S. Sharif, 3D printing of acrylonitrile butadiene styrene by fused deposition modeling: Artificial neural network and response surface method analyses, Journal of Materials Engineering and Performance, Vol. 32, No. 4, pp. 2016-2028, 2023. 
[44]    S. H. Riza, S. H. Masood, R. A. R. Rashid, S. Chandra, Selective laser sintering in biomedical manufacturing,  in: Metallic biomaterials processing and medical device manufacturing, Eds., pp. 193-233: Elsevier, 2020. 
[45]    Z. Wu, D. Sun, C. Shi, S. Chen, S. Tang, Y. Li, C. Yan, Y. Shi, B. Su, Moisture‐Thermal Stable, Superhydrophilic Alumina‐Based Ceramics Fabricated by a Selective Laser Sintering 3D Printing Strategy for Solar Steam Generation, Advanced Functional Materials, Vol. 33, No. 45, pp. 2304897, 2023. 
[46]    Z. Wu, C. Shi, A. Chen, Y. Li, S. Chen, D. Sun, C. Wang, Z. Liu, Q. Wang, J. Huang, Large‐Scale, Abrasion‐Resistant, and Solvent‐Free Superhydrophobic Objects Fabricated by a Selective Laser Sintering 3D Printing Strategy, Advanced Science, Vol. 10, No. 9, pp. 2207183, 2023. 
[47]    A. G. Tabriz, H. Kuofie, J. Scoble, S. Boulton, D. Douroumis, Selective Laser Sintering for printing pharmaceutical dosage forms, Journal of Drug Delivery Science and Technology, Vol. 86, pp. 104699, 2023. 
[48]    Z. Wu, Y. Li, C. Shi, Z. Lu, B. Su, A general method for fabricating polymer-based intrinsic superhydrophobic objects by a selective laser sintering 3D printing strategy, Composites Part B: Engineering, Vol. 264, pp. 110910, 2023. 
[49]    F. P. Melchels, J. Feijen, D. W. Grijpma, A review on stereolithography and its applications in biomedical engineering, Biomaterials, Vol. 31, No. 24, pp. 6121-6130, 2010. 
[50]    N. D. Borra, V. S. N. Neigapula, Parametric optimization for dimensional correctness of 3D printed part using masked stereolithography: Taguchi method, Rapid Prototyping Journal, Vol. 29, No. 1, pp. 166-184, 2023. 
[51]    Y. T. Kim, A. Ahmadianyazdi, A. Folch, A ‘print–pause–print’protocol for 3D printing microfluidics using multimaterial stereolithography, Nature protocols, Vol. 18, No. 4, pp. 1243-1259, 2023. 
[52]    P. Lakkala, S. R. Munnangi, S. Bandari, M. Repka, Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: A review, International journal of pharmaceutics: X, Vol. 5, pp. 100159, 2023. 
[53]    K. Sen, T. Mehta, S. Sansare, L. Sharifi, A. W. Ma, B. Chaudhuri, Pharmaceutical applications of powder-based binder jet 3D printing process–a review, Advanced drug delivery reviews, Vol. 177, pp. 113943, 2021. 
[54]    L. Cabezas, C. Berger, E. Jiménez-Piqué, J. Pötschke, L. Llanes, Testing length-scale considerations in mechanical characterization of WC-Co hardmetal produced via binder jetting 3D printing, International Journal of Refractory Metals and Hard Materials, Vol. 111, pp. 106099, 2023. 
[55]    L. Chen, W. Chen, Z. Fu, G. Ding, Z. Chen, D. Zhu, Binder jet 3D printing of 316L stainless steel: orthogonal printing and sintering process optimization, Advanced Engineering Materials, Vol. 25, No. 5, pp. 2200641, 2023. 
[56]    W. Chen, Z. Chen, L. Chen, D. Zhu, Z. Fu, Optimization of printing parameters to achieve high-density 316L stainless steel manufactured by binder jet 3D printing, Journal of Materials Engineering and Performance, Vol. 32, No. 8, pp. 3602-3616, 2023. 
[57]    T. Wolfe, R. Shah, K. Prough, J. L. Trasorras, Coarse cemented carbide produced via binder jetting 3D printing, International Journal of Refractory Metals and Hard Materials, Vol. 110, pp. 106016, 2023. 
[58]    Y.-J. Jeong, S. Jeong, S. Kim, H. J. Kim, J. Jo, A. Shanmugasundaram, H. Kim, E. Choi, D.-W. Lee, 3D-printed cardiovascular polymer scaffold reinforced by functional nanofiber additives for tunable mechanical strength and controlled drug release, Chemical Engineering Journal, Vol. 454, pp. 140118, 2023. 
[59]    A. Daghrery, J. A. Ferreira, J. Xu, N. Golafshan, D. Kaigler, S. B. Bhaduri, J. Malda, M. Castilho, M. C. Bottino, Tissue-specific melt electrowritten polymeric scaffolds for coordinated regeneration of soft and hard periodontal tissues, Bioactive Materials, Vol. 19, pp. 268-281, 2023. 
[60]    I. Klabukov, T. Tenchurin, A. Shepelev, D. Baranovskii, V. Mamagulashvili, T. Dyuzheva, O. Krasilnikova, M. Balyasin, A. Lyundup, M. Krasheninnikov, Biomechanical behaviors and degradation properties of multilayered polymer scaffolds: The phase space method for bile duct design and bioengineering, Biomedicines, Vol. 11, No. 3, pp. 745, 2023. 
[61]    S. Cao, R. Bo, Y. Zhang, Polymeric scaffolds for regeneration of central/peripheral nerves and soft connective tissues, Advanced NanoBiomed Research, Vol. 3, No. 3, pp. 2200147, 2023. 
[62]    P. Feng, S. Shen, L. Yang, Y. Kong, S. Yang, C. Shuai, Vertical and uniform growth of MoS2 nanosheets on GO nanosheets for efficient mechanical reinforcement in polymer scaffold, Virtual and Physical Prototyping, Vol. 18, No. 1, pp. e2115384, 2023. 
[63]    D.-M. Radulescu, I. A. Neacsu, A.-M. Grumezescu, E. Andronescu, New insights of scaffolds based on hydrogels in tissue engineering, Polymers, Vol. 14, No. 4, pp. 799, 2022. 
[64]    D. V. Krishna, M. R. Sankar, Extrusion based bioprinting of alginate based multicomponent hydrogels for tissue regeneration applications: state of the art, Materials Today Communications, Vol. 35, pp. 105696, 2023. 
[65]    A. Kumar, A. Sood, G. Agrawal, S. Thakur, V. K. Thakur, M. Tanaka, Y. K. Mishra, G. Christie, E. Mostafavi, R. Boukherroub, Polysaccharides, proteins, and synthetic polymers based multimodal hydrogels for various biomedical applications: A review, International Journal of Biological Macromolecules, pp. 125606, 2023. 
[66]    M. B. Sordi, M. C. Fredel, A. C. C. da Cruz, P. T. Sharpe, R. de Souza Magini, Enhanced bone tissue regeneration with hydrogel-based scaffolds by embedding parathyroid hormone in mesoporous bioactive glass, Clinical Oral Investigations, Vol. 27, No. 1, pp. 125-137, 2023. 
[67]    H.-T. Lu, C. Lin, Y.-J. Wang, F.-Y. Hsu, J.-T. Hsu, M.-L. Tsai, F.-L. Mi, Sequential deacetylation/self-gelling chitin hydrogels and scaffolds functionalized with fucoidan for enhanced BMP-2 loading and sustained release, Carbohydrate Polymers, Vol. 315, pp. 121002, 2023. 
[68]    S. L. Tomić, M. M. Babić Radić, J. S. Vuković, V. V. Filipović, J. Nikodinovic-Runic, M. Vukomanović, Alginate-based hydrogels and scaffolds for biomedical applications, Marine Drugs, Vol. 21, No. 3, pp. 177, 2023. 
[69]    H. Tolabi, N. Davari, M. Khajehmohammadi, H. Malektaj, K. Nazemi, S. Vahedi, B. Ghalandari, R. L. Reis, F. Ghorbani, J. M. Oliveira, Progress of microfluidic hydrogel‐based scaffolds and organ‐on‐chips for the cartilage tissue engineering, Advanced Materials, Vol. 35, No. 26, pp. 2208852, 2023. 
[70]    S. J. Salami, H. Soleimanimehr, A. Maghsoudpour, S. Etemadi Haghighi, Fabrication of polycaprolactone/chitosan/hydroxyapatite structure to improve the mechanical behavior of the hydrogel‐based scaffolds for bone tissue engineering: Biscaffold approach, Polymer Composites, Vol. 44, No. 8, pp. 4641-4653, 2023. 
[71]    M. Silva, I. Pinho, H. Gonçalves, A. C. Vale, M. C. Paiva, N. M. Alves, J. A. Covas, Engineering Ligament Scaffolds Based on PLA/Graphite Nanoplatelet Composites by 3D Printing or Braiding, Journal of Composites Science, Vol. 7, No. 3, pp. 104, 2023. 
[72]    D. Yao, Z. Zhao, Y. Wei, J. Li, Gradient scaffolds developed by parametric modeling with selective laser sintering, International Journal of Mechanical Sciences, Vol. 248, pp. 108221, 2023. 
[73]    D. Durán-Rey, R. Brito-Pereira, C. Ribeiro, S. Ribeiro, J. A. Sánchez-Margallo, V. Crisóstomo, I. Irastorza, U. Silván, S. Lanceros-Méndez, F. M. Sánchez-Margallo, Development of silk fibroin scaffolds for vascular repair, Biomacromolecules, Vol. 24, No. 3, pp. 1121-1130, 2023. 
[74]    L. P. Maljaars, Z. Guler, J.-P. W. Roovers, D. Bezuidenhout, Mechanical reinforcement of amniotic membranes for vesicovaginal fistula repair, Journal of the mechanical behavior of biomedical materials, Vol. 139, pp. 105680, 2023. 
[75]    R. Mazloomnejad, A. Babajani, M. Kasravi, A. Ahmadi, S. Shariatzadeh, S. Bahrami, H. Niknejad, Angiogenesis and re-endothelialization in decellularized scaffolds: recent advances and current challenges in tissue engineering, Frontiers in Bioengineering and Biotechnology, Vol. 11, pp. 1103727, 2023. 
[76]    Z. U. Arif, M. Y. Khalid, A. Zolfagharian, M. Bodaghi, 4D bioprinting of smart polymers for biomedical applications: Recent progress, challenges, and future perspectives, Reactive and Functional Polymers, Vol. 179, pp. 105374, 2022. 
Volume 56, Issue 1
January 2025
Pages 1-14
  • Receive Date: 20 October 2024
  • Revise Date: 06 November 2024
  • Accept Date: 11 November 2024