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Abstract 

Ultrasonic guided waves play a crucial role in the non-destructive testing of 

pipelines. Their dispersive nature and the diversity of modes present make 

them often difficult to interpret, especially in areas close to defects or when 

transducers are located close to the edges. In these situations, in addition to 

propagative modes, complex modes also appear. The aim of this study is to 

use the spectral method to plot the dispersion curves of ultrasonic guided 

waves in anisotropic pipelines. 

We begin by describing the mathematical formulation of the problem, then 

explain and apply the spectral method algorithm to plot these curves, 

covering different levels of anisotropy in order to test the robustness of the 

method to various mechanical behaviors. Particular attention is paid to 

complex modes, which are poorly studied in the pipeline literature. We 

treated longitudinal and torsional modes. This study enables us to 

understand the frequency ranges that favor the appearance of these modes. 

The results obtained are compared with analytical solutions based on 

classical algorithms. We also compare the computation time and coding 

effort required with those of previous analytical methods. These studies 

demonstrate the significant advantage of the spectral method in terms of 

accuracy, efficiency and computation time savings for plotting the dispersion 

curves of complex modes in anisotropic pipelines. 
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1. Introduction 

Ultrasonic guided waves (UGW) have established themselves as an essential inspection tool in the field of non-

destructive testing. Their ability to propagate over long distances without significant attenuation, while inducing a 

global vibration of the waveguide, makes them one of the most widely used waves for inspecting the health of large 

flat and cylindrical structures [1,2]. To carry out non-destructive testing using UGW and study the interaction of the 

wave with a defect, several elements are required. Among these essential elements are the dispersion curves and the 

shape of the mode to be generated. From a mathematical point of view, dispersion curves represent the pairs 

(frequencies, wavenumbers) that satisfy the dispersion equations. From a physical point of view, they indicate the 
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frequencies likely to generate UGW in a given waveguide. Using these curves, we can obtain information on the 

different modes that can be generated, as well as their cut-off frequencies. The frequencies thus obtained are 

classified into two families, depending on the vibratory state of the controlled structure (symmetrical or non-

symmetrical vibration). The study of UGW dispersion began decades ago and is still of great importance today. 

These curves can be obtained either analytically, using function root finding techniques (such as the Newton-

Raphson method [3], the bisection method [4] and hybrid methods [5]), or using numerical methods and information 

from numerical simulations [6], or experimentally [7]. 

Numerous analytical studies have been carried out by various researchers to mathematically formulate and plot 

the dispersion curves of various types of waveguides. These include Gazis [8,9], Graff [10] and Nayfeh [11,12]. 

Others have explored the asymptotic analysis of dispersion equations to simplify calculations [13,14]. However, 

these formulations become complex when dealing with multilayer structures (due to poor matrix conditioning). To 

overcome this difficulty, researchers have developed new matrix techniques for plotting dispersion curves. These 
include the transfer matrix method TMM [15], the stiffness matrix method SMM [16], the global matrix method 

GMM [17], the equivalent matrix method EM [18], the reverberant ray matrix method MRRM [19] and the effective 

stiffness matrix method ESM [20]. 

Despite the variety of analytical approaches, these remain computationally time-consuming. Numerical methods 

have been introduced to overcome this limitation. These include the semi-analytical finite element method (SAFE) 

[21], Legendre's orthogonal polynomial series method [22], as well as numerical software and free interfaces such as 

DISPERSE [23], DC [24,25] and GUIGUW [26]. One particular method is based on a scheme of spectral 

approximation of partial derivatives using the Chebyshev polynomial, known as the Spectral Method (SM). Adamou 

[27] developed it to characterize the dispersion of ultrasonic guided waves in cylindrical geometries with high 

attenuation, inhomogeneity and anisotropy. The method is based on a wavenumber-dependent formulation. Using 

Matlab's eig function, Adamou obtained the eigenfrequencies of the system. Karpfinger et al [28,29] extended the 
method to cylindrical multilayer structures. They also proposed a calculation algorithm based on the spectral method 

to obtain dispersion curves for a cylindrical tube with a borehole and a fluid flowing through it. Baohua Yu et al and 

Zharkinov et al [30,31] used MS to process multilayer cylindrical structures with imperfect contact and filled with 

fluid. Quintanilla [32,33] used the spectral method to characterize the dispersion of propagative and evanescent 

modes in highly anisotropic viscoelastic structures such as plates and cylinders. For this, he considered a frequency 

formulation and used a matrix method to generate the wave numbers (pure real, pure imaginary and complex). Li et 

al [34] treated the case of a rotating annular plate with a functional gradient of material properties varying 

continuously in the radial direction. Dubuc et al [35] dealt with anisotropic elastic plates under non-uniform stresses 

(taking into account the dispersion of propagative and non-propagative modes). Zitouni et al. [36,37] carried out a 

comparative study between the spectral method and analytical algorithms for finding the zero of a function. They 

also analyzed the eigenvectors (displacements) derived from the SM and compared them with the analytical 

displacements and stresses normalized by sound power. They also dealt with the case of non-propagating modes for 
composite plates and steel pipelines, where they proposed a hybrid method for plotting the dispersion curves of 

complex modes [38]. Mekkaoui et al [39] tried to optimize the spectral method by a balancing algorithm to plot the 

dispersion curves of multilayer structures with a large number of layers. Although the spectral method is recognized 

for its importance and power, it remains relatively little used in the field of guided wave propagation compared with 

other numerical methods. In addition, the plotting of complex modes using the spectral method is still poorly 

explored and lacks in-depth detail. 

The aim of our work is to apply the spectral method and demonstrate its advantages over standard methods for 

plotting the dispersion curves of anisotropic pipelines. It also seeks to understand the dispersive behavior of 

complex modes in these pipelines. A better understanding of these phenomena will enable controllers to better 

apprehend the interactions of guided waves, particularly in the near-field of defects, thus simplifying the process of 

detecting and analyzing structural anomalies. To this end, the mathematical formulation of the problem is explained. 
We then detail and apply the spectral method algorithm to plot dispersion curves. These curves are plotted for 

different degrees of anisotropy (isotropic and orthotropic) and different type of materials (Nickel and Carbon fiber 

composite), to demonstrate the robustness of the method to different mechanical behaviors. We have chosen to deal 

with the case of complex modes, which are poorly treated in the literature in the case of pipelines. These modes have 

the characteristic of propagating in areas close to defects and in areas where waves interact with the edges of a 

waveguide. Both longitudinal and torsional modes were investigated. The results obtained are compared with those 

found analytically. A comparison of the computation time between the spectral method and previous analytical 

methods is implemented. Coding efforts and the number of iterations for each method are also discussed. An error 

calculation is demonstrated to show the conformity of the MS results. The spectral method offers a great advantage 

in terms of saving computation time, with high accuracy in plotting the dispersion curves of complex modes in 

anisotropic pipelines.  
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2. Mathematical formulation 

The motion of an anisotropic homogeneous elastic solid can be characterized by the tensor equations of dynamic 

behavior [8,11]. The displacement field is expressed for a cylindrical pipe as follows: 
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where U1
m,U2

m,U3
m represent the radial components, η1, η2 are the circumferential components, ω is the angular 

frequency and m is a positive integer representing the order of the circumferential modes. 

The expressions for the radial and circumferential components are: 
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Where φ, φ1, φ2 and φ3 are unknown functions linked only to r. 

The components of the elastic pipeline stress tensor can be obtained using the behavior law and the deformation-
displacement relationship written as: 
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where i,j,k,l (not italicized)=1,2,3. ρ is the density, Cijkl the stiffness tensor, σij the stress tensor and εkl the strain 

tensor. In order to facilitate indexing notation, we adopt the following contracted notation: 1→11, 2→22, 3→33, 

4→23, 5→13 and 6→12. 

If we replace (1), (4) and (5) in (2) we obtain a differential equation system governed by the first- and second-

order partial derivative with respect to the component r (
2

2
,

r r
). In case of isotropic pipeline, the stresses σrr,σrө 

and σr3 are written as: 
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Substituting equation (6) and (1) using (2) in (3) we find matrix system written as: 
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2 2 3h φ φ . 

In previous works, several types of approaches have been proposed to formulate the eigenvalue and eigenvector 

problem. In the following, we will present the frequency approach, which has been shown to be robust for modeling 

UGW propagation in plates and laminates [36,37].  

The frequency approach considers wavenumber to be the eigenvalue to look for, so we can write: 

2
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Where {U}={φ,h1,h2,h3}T is the vector of displacement components. [L] represents diagonal matrix (4,4) matrix 

containing all the mathematical (
2

2
,

r r
) and physical (w,Cij) aspects of the problem.  

Similarly, the boundary conditions can be written as follows: 
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Once the three equations of motion and the boundary conditions have been defined, the next step is to use the 

spectral method to solve our system. 

3. Spectral method algorithm 

The spectral collocation method involves discretizing the waveguide using N points distributed non-uniformly 

along its thickness, which we refer to as collocation points. We then substitute the partial derivatives with 
differentiation matrices (DMs). We opt for Chebyshev's differentiation matrices [40], recognized for their high 

spectral convergence. These matrices are defined from the N collocation points mentioned above, making them by 

size (N,N). As the equations in question contain only first- and second-order partial derivatives, we obtain first- and 

second-order differentiation matrices. 
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Where p is the order of the partial derivative. 

We replace the approximation (7) in the equations of motion (5) and boundary conditions (6). The matrix 

dimensions then become [L](4N,4N), [L’](3N,4N) and {U}(4N,1). Note that for expressions that do not contain a partial 

derivative, it is necessary to multiply by an identity matrix [I](N,N) (for dimensional equivalence). 

Figure 1 summarizes all the steps explained above: 
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Fig 1: Flowchart of the spectral method for plotting dispersion curves for propagative, evanescent and complex modes.  

The components of the matrix [L] can be written as: 
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In the same way, applying the spectral method to the boundary conditions, we find: 
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4. Numerical results 

4.1. Nomenclature of modes 

We consider a homogeneous cylindrical tube unlimited along x3 with inner radius r1 and outer radius r2. The 

cylinder is marked in coordinates (xr,xϴ,x3) (Fig 2). Rotation between the cylindrical reference frame and the 

reference frame (x1,x2,x3) takes place at an angle ϴ. 

 
Fig 2: Pipeline geometry (x1,x2,x3): Cartesian coordinate system. (xr,xϴ,x3): Global cylindrical coordinate system. x3: direction of 

propagation. ϴ: angle between global cylindrical coordinate system and Cartesian coordinate system. 

The researchers opted for a two-part approach to the study of hollow cylinders, due to the diversity of modes 

present. The first examines the cylinder's circumference, modeling its structure as a cylindrical ring. 

 The other aspect of the study focuses on the cylinder's revolution. In this case, the structure is modeled as a bar. 

What's remarkable here is that for certain ratios between the cylinder's thickness and its inner radius (notably at the 
thin plate limit), the results obtained resemble those of a plate. 

The propagative modes that exist in cylindrical tubes are longitudinal modes L(0,n) (comparable to symmetrical 

Lamb modes for plate), torsional modes T(0,n) (comparable to SH modes) and flexural modes F(0,n). 

n represents the mode number. 

4.2. Nickel pipeline 

Consider a nickel pipeline of thickness e=4mm. Nickel material is widely used in the production and transport of 

industrial gases and liquefied natural gas, which require nickel/iron alloys. The table below shows the elastic 

constants of this material. 

Table 1: Nickel's elastic constants and density [24]. 

ρ(Kg/m3) C11=C22=C33 

(GPa) 

C12=C13=C23 

(GPa) 

C44=C55=C66 

(GPa) 

8910 261 151 130.9 

We then plot the pipeline dispersion curves using the spectral method for a complex wavenumber range k=i10-

5:10i:12000i (m-1). Figure 3 shows these curves for N=15 collocation points. Figure 3a shows the complex 

longitudinal modes and figure 3b the complex Torsional modes. The red color designates the frequencies of the 
modes that propagate symmetrically along the pipeline thickness, and those in blue propagate antisymmetrically. 

These curves are plotted in the (frequency*thickness, wavenumber) plane. We note that we have a braiding 

phenomenon in the curves of figure 3a, which is in agreement with the literature for complex modes. Moreover, the 

complex modes increase with frequency until they reach a maximum, after which they decrease and we can observe 
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a plane of symmetry at Imag(k)=0. These remarks are in accordance with those in the reference [41]. 

 
Fig 3: Dispersion curves for a Nickel pipeline plotted using the spectral method for Longitudinal modes (a) and torsional modes (b). Red 

color: Symmetrical modes. Blue color: Antisymmetric modes. 

The spectral method was able to represent the dispersion of UGW in a material with a low degree of anisotropy 

(isotropic) in the following we will examine the effectiveness of SM by considering a material with a high degree of 

anisotropy (orthotropic). 

4.3. Carbon fiber composite pipeline 

We now consider a carbon fiber composite pipeline. This type of material is known for its high mechanical 

properties and light weight. It is widely used in the automotive and aerospace industries. The characteristics of this 

material are given in the following table: 

Table 2: Elastic constants and density of carbon fiber composite [24]. 

ρ(Kg/m3) C11 

(GPa) 

C12=C13 

(GPa) 

C23 

(GPa) 

C22=C33 

(GPa) 

 

C44 

(GPa) 

C55=C66 

(GPa) 

1530 135 5.7 8.51 14.2 2.87 4.55 

We then plot the dispersion curves of a carbon fiber composite using the spectral method for N=15. Figure 4a 

shows the curves for longitudinal modes and Figure 4b those for torsional modes. In the same way, we can see that 
the complex modes increase with frequency up to a maximum value. The maximum frequencies of longitudinal 

modes are greater than those of torsional modes. In addition, we have a plane of symmetry at imag(k)=0. Comparing 

longitudinal modes in the isotropic pipeline with those in the composite pipeline, we find that the number of modes 

increases with the degree of anisotropy of the material, which is normal. Moreover, even the shape of the latter 

changes when increasing the degree of anisotropy. 

 

5. Discussion 

To demonstrate the accuracy of the results obtained by the spectral method, we compared the eigenvalues 

obtained by the SM with those of the analytical method, which uses the bisection method to plot the results. The 

tables below show the error between the two solutions. 

From Tables 3, 4, 5 and 6 we can see that the errors obtained between the bisection and spectral methods are 

approximately 10-5 for the different modes (longitudinal and symmetrical and antisymmetrical torsion) and for the 

two types of pipelines studied. These values are very acceptable and demonstrate the accuracy of the spectral 

method results. We then present a comparison table between the spectral method and two analytical reference 

methods (the bisection method and the Newton-Raphson method). This comparison includes computation time and 

number of iterations. 
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Fig 4: Dispersion curves for a carbon fiber composite pipeline plotted using the Longitudinal mode spectral method (a) and torsional 

mode spectral method (b). Red color: Symmetrical modes. Blue: Antisymmetric modes. 

Table 3: Squared error between spectral solutions and analytical solutions of the Nickel pipeline for Longitudinal modes and Re(k)=100 

m-1. 

Modes Spectral 

frequency (fs) 

in MHz 

Analytic 

frequency (fa) 

in MHz 

Err=√(fs-fa)2 

First 

Symmetrical 

Longitudinal 

mode 

0.680000 0.680001 1 10-5 

First 

Antisymmetrical 

Longitudinal 

mode 

0.472002 0.472007 5 10-6 

Second 

symmetrical 

Longitudinal 

mode 

1.929008 1.929090 8.2 10-5 

Second 

Antisymmetrical 

longitudinal 

mode 

1.372501 1.372502 1 10-6 

Table 4: Squared error between spectral solutions and analytical solutions of the Nickel pipeline for torsional modes and Re(k)=100 m-1. 

Modes Spectral 

frequency (fs) 

in MHz 

Analytic 

frequency (fa) 

in MHz 

Err=√(fs-fa)2 

First 

Symmetrical 

Torsional mode 

0.956374 0.956323 1.7 10-6 

First 

Antisymmetrical 

torsional mode 

0.475304 

 

0.475314 

 

1 10-5 

 

Second 

Symmetrical 

Torsional mode 

1.915512 1.915515 3 10-6 

Second 

Antisymmetrical 

Torsional mode 

1.436029 

 

1.436091 

 

6.2 10-5 
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Table 5: Squared error between spectral solutions and analytical solutions of the composite pipeline for Longitudinal modes and 

Re(k)=100 m-1. 

Modes Spectral 

frequency (fs) 

in MHz 

Analytic 

frequency (fa) 

in MHz 

Err=√(fs-fa)2 

First 

Symmetrical 

Longitudinal 

mode 

0.392555 0.392544 1.1 10-5 

First 

Antisymmetrical 

Longitudinal 

mode 

0.151561 

 

0.151514 

 

4.7 10-5 

Second 

Symmetrical 

longitudinal 

mode 

0.850049 

 

0.850091 

 

4.2 10-5 

Second 

Antisymmetrical 

longitudinal 

mode 

0.631238 0.631223 1.5 10-5 

Table 6: Squared error between spectral solutions and analytical solutions of the composite pipeline for torsional modes and Re(k)=100 

m-1. 

Modes Spectral 

frequency (fs) 

in MHz 

Analytic 

frequency (fa) 

in MHz 

Err=√(fs-fa)2 

First 

Symmetrical 

Torsional mode 

0.341366 0.341362 4 10-6 

First 

Antisymmetrical 

Torsional mode 

0.168946 

 

0.168943 

 

3 10-6 

Second 

Symmetrical 

Torsional mode 

0.684377 0.684322 5.5 10-5 

Second 

Antisymmetrical 

Torsional mode 

0.512887 0.512890 3 10-6 

Table 7: Comparison of different methods for the pipelines studied with a wave number calculation range k=i10-5:10i:12000i (m-1). 

Materials Control Spectral 

method 

(N=15) 

Bisection 

method 

Newton-

Raphson 

method 

Steel 

pipeline 

Calculation 

time in (s) 

3.6158 2884 1598 

Number of 

iterations 

1200 (1 for 

each k) 

70289 94617 

Carbon 

fiber 

composite 

pipeline 

Calculation 

time in (s) 

4.5406 3666 2263 

Number of 

iterations 

1200 (1 for 

each k) 

85721 97149 

The results in Table 7 show the computational time saved when using the spectral method compared with known 

analytical methods for the Nickel and Carbon fiber composite pipelines. The results in Table 7 were obtained using 

an Intel(R) Core (TM) i5-6300U CPU @ 2.40GHz 2.50 GHz. The spectral method demonstrated its effectiveness in 

modeling the dispersion of ultrasonic guided waves in isotropic and anisotropic pipelines, with a saving in 

computation time, low coding effort and good convergence of the order of 10-5 compared with analytical methods 

based on root finding algorithms. 
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6. Conclusion 

The aim of our study was to apply the spectral method to plot dispersion curves for anisotropic pipelines. After 

presenting the mathematical formulation of the problem, we used the spectral method algorithm to obtain these 

curves. We focused on complex modes. We varied the degree of anisotropy to demonstrate the robustness of the 

method to different mechanical behaviors, with particular emphasis on the treatment of complex modes, little 

explored in the pipeline literature. We have noted the braiding phenomenon specific to complex modes, with the 

different planes of symmetry represented by the dispersion curves and their extremums. Both longitudinal and 

torsional modes were treated. The results were compared with analytical solutions, and an analysis of computation 

time, error and coding effort between the spectral method and previous analytical methods was carried out. This 

comparison revealed a significant advantage of the spectral method in terms of computational efficiency, offering 
high accuracy in plotting the dispersion curves of complex modes in anisotropic pipelines. On the one hand, this 

study aims to show the advantages of the spectral method over conventional methods for plotting the dispersion 

curves of anisotropic pipelines. On the other hand, the study also aims to understand the dispersive character of 

complex modes in pipelines. This will make it easier for controllers to understand the interaction phenomena of 

guided waves, especially in the near-field of a defect. All these results encourage us in future work to apply SM in 

viscoelastic materials that exhibit attenuation of guided waves. 
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