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Abstract 

For the aircraft and space shuttles to have the right properties, they need new engineering 

materials. Changing the qualities of the material in more than one direction is one way to 

do this. These features should be seen in in-plane, bi-directional functionally graded 

materials. This study examines the vibration behavior of a two-directional functionally 

graded taper beam (TDFGTB) with uniform load distribution. The analysis uses a refined 

higher-order shear deformation theory, Lagrange equations, and the displacement functions 

are formulated in simple algebraic polynomials incorporating admissible functions to 

satisfy the boundary conditions in both directions with the help of a Ritz-type solution. 

The components of admissible functions are derived from Pascal’s triangle. The study also 

examines the influence of taper ratios, aspect ratios, and gradation exponents on the 

vibration response. The results provide a benchmark for assessing beam theories and are 

crucial for optimizing the design of TDFGTBs. 

Keywords : Refined Higher-order Shear Deformation Theory, Two-Directional Functionally Graded Taper Beam, 

Hamilton's principle, Ritz type solution, Frequency responses. 

1. Introduction 

An essential aspect of developing structural design and guaranteeing structural integrity is the examination of the vibration 

properties of Two-directional Functionally Graded Taper Beam (TDFGTB) using refined higher-order shear deformation theory 

(RHSDT). Understanding of the dynamic characteristics exhibited by Functionally Graded Materials (FGM) within tapered beam 

structures facilitates the enhancement of material gradients and leads to progress in various engineering domains such as heat 

shields in aircraft, fusion reactors, heat exchangers, turbine blades, etc. in which the material experiences a significantly elevated 

temperature field characterized by a substantial temperature gradient both on the surface and inside its thickness [1]. 

Intricate structural components encounter dynamic loads that result in vibration. In some instances, the magnitude of dynamic 

loading might be sufficiently intense to result in significant deformations, hence introducing complexity to the system via the 

induction of geometric nonlinearity. FGMs have attracted considerable interest in the structural engineering field owing to their 

distinctive characteristics, which exhibit continuous variation throughout their volume [2]. Stress concentrations in homogeneous 

materials may cause early failure under specific loading circumstances, while FGMs may improve load-bearing and stress 

distribution by gradually changing their material composition. 

Previous research has examined many aspects of vibration analysis in functionally graded taper beams (FGTB), providing 

significant contributions to understand their dynamic characteristics and structural performance. conducted a comparative analysis 

on the effectiveness of 1D and 3D models in modeling free vibrations of FGTBs using ABAQUS and found that as FGTB geometric 

complexity and material inhomogeneity increase, the differences between models become more noticeable [3]. conducted a 

comparative analysis of deflections in a FGTB under a uniformly distributed load using the higher-order shear deformation theory 

(HSDT), power-law formula, Hamilton's principle, and Navier's solutions and concluded that the geometrical factors influence the 

structural analysis of the beam [4]. used HSDT and von-Kármán's nonlinear geometric relation to create linear and nonlinear 

isogeometric finite element models for an FGTB with graphene platelet-reinforced composite and the nonlinear bending and 

vibration responses were examined through parametric studies [5]. Explored the relationship between size and nonlinear free  
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longitudinal vibration of axially functionally graded nanorods using nonlocal elasticity theory while using Hamilton's principle to 

compute nonlinear natural frequencies [6].  

conducted a numerical study on dimensionless natural frequencies of non-uniform aluminum beams covered with FGM and 

found that the width of the beams exhibits variability, coating material's characteristics change according to a polynomial function 

and highlighted the importance of considering the critical threshold for shape variation [7]. investigated the vibrations of a 

cantilevered conical beam, focusing on the non-linear impacts of curvature and inertia on the frequency response using the Euler-

Bernoulli beam theory and Hamiltonian mechanics principles and explored the influence of material distribution on the system's 

frequency response during the early resonance stage, integrating finite gradient methodology and nonlinear dynamics [8]. studied 

the vibration mechanics of a porous bi-directional functionally graded doubly curved sandwich shell using HSDT theory and the 

p-version finite element technique and explored the impact of gradient indices and porosity distribution on performance [9]. 

conducted a nonlinear study on a cantilever bar element made of graded material with porosity characteristics, considering the 

axial orientation, material properties, and stress-strain relationship and found that porosity and material graduation significantly 

influenced the bar element's nonlinear behavior [10, 11]. They developed a closed-form solution for frequency vibration, 

incorporating nonlocal parameters in Bessel functions and found that in-plane pre-loads significantly influence natural frequencies 

for decreasing radii of the circular nanoplate . 

Various solution methods have been proposed for solving the governing equations that assess the vibration of Functionally 

Graded Beams (FGB). The primary objective of analytical approaches is to get precise solutions to the differential equations, 

considering simplifying assumptions and using closed-form solutions such as exact solutions as adapted by, typically based on 

Galerkin and state space formulation [12]. The method of initial values was adapted by to consider the small-scale effects occurring 

in structures of smaller size [13]. Solved the governing equation of motion for vibration analysis using the Galerkin method and 

parametric investigations have been conducted on elastic foundations to examine the outcomes and applicability to real-world 

issues and concluded that the varied foundation exerts a substantial impact on the FGM [14]. Studied the nonlinear behavior of a 

porous functionally graded Euler-Bernoulli nanobeam under mechanical and electrical loads using nonlocal strain gradient 

elasticity theory. They used Hamilton's principle, Galerkin techniques and other methods to solve governing equations for various 

boundary conditions. The findings revealed that length-scale characteristics significantly influence the nonlinear vibration behavior 

of these devices . 

Conducted a study on the free vibration analysis of FGTB to observe the impact of shear strain and solved the governing 

equations using the complementary functions method [15]. proposed the generalized differential quadrature method (GDQM) for 

solving the governing equation and estimating the coefficients for assessing the structural mechanics of a Timoshenko nanobeam 

which is functionally graded and tapered [16]. GDQM was also used by in assessing the vibration analysis of a FGTB composed 

of piezoelectric material [17]. The isogeometric analysis was adapted by in studying the vibration characteristics of curved 

microbeams. Utilizing numerical approaches, the beam domain is discretized using numerical methods, and the governing 

equations are solved by utilizing numerical methods [18]. used Fredholm integral equations to analyze the free vibration in a FGTB 

and studied the effect of axial force and shear deformation [19]. studied nanocomposite microbeams reinforced with FGTB, 

focusing on size-dependent free vibration and buckling characteristics and suggested that synchronized axial distributions could 

enhance buckling resistance and natural frequency, while used homogenization methodology to assess microbeam vibration 

mechanics [20, 21]. Studied thermal-induced shear buckling of orthotropic single-layered graphene sheets using nonlocal elasticity 

theory and the differential quadrature method. They analyzed six border conditions, considering elastic media, temperature 

variations, material properties, and boundary conditions . 

Used the Chebyshev-Ritz method to compute buckling and compared it with buckling tests on composites made from epoxy 

resin, glass fiber, and nanorods and found that nanorods enhance tensile strength, rigidity, and critical buckling load [22]. Studied 

a sandwich composite beam strengthened with carbon nanorods from potato waste that was subjected to axially variable force, and 

the behavior of the beam was analyzed using strain gradient, general strain theory, shear deformation theory and HSDT. They 

found that using recycled materials enhances sandwich beam rigidity and increase critical buckling loads [23]. Examined the 

stability of a spinning viscoelastic sandwich beam with a soft core and carbon nanotube reinforced metal matrix nanocomposites 

skin, focusing on residual stress effects and the governing equations of motion for a rotating viscoelastic sandwich beam. Factors 

such as carbon nanotube distribution, volume fraction, spinning speed, critical loading, core thickness, axial force, and residual 

stress were investigated and suggested that varying spinning speeds can determine the ideal core thickness to prevent instability 

[24]. Studied the vibration characteristics of multilayered piezoelectric nanobeams using Timoshenko beam theory, nonlocal 

continuum theory, surface elasticity theory and the differential quadrature method . Studied the vibration behaviors of a micro-

cylindrical sandwich panel using carbon nanotubes and graphene platelets as renforcements with porous and foam cores and 

analyzed higher-order shear deformation theory. They found that natural frequencies decrease with temperature but increase with 

SMA materials. The impact of different core materials on sandwich composite plates' low velocity impact behavior, to design and 

manufacture samples with more stored energy against impact and to find light sandwich structures [25]. The method for 

synthesizing hollow magnetic spheres with antibacterial properties, which could be useful in medicine, particularly cancer 

treatment and a hydrothermal method for synthesizing carbon nano-arrays using locally available materials using stainless steel 

type 1.4401 for autoclave system construction [26, 27]. 

Studied the oscillation characteristics of a sandwich beam with a porous core and composite face layers with shape memory 

alloy (SMA) under free and forced vibrations. They used Vlasov's model, Hamilton's principle, first-order shear deformation 

theory, Navier's method and validated results using relevant literature sources, while the key variables included temperature, SMA 

volume fraction, porosity distribution, CNT weight fraction, and geometric factors [28, 29]. Analyzed the structural properties of 

a sandwich beam strengthened with carbon nanotubes/graphene origami auxetic metamaterials (GOAM) and porous cores. They 
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used the variational iteration method (VIM) to solve the equations of motion under different boundary conditions. Factors such as 

carbon nanotube distribution, porosity coefficient, porous core type, porosity parameter, weight fraction, and GOAM folding 

degree were examined. The results showed a strong agreement with previous studies, with a maximum error percentage of 0.3% 

for the first five frequencies and 0.22% for the first frequency [30, 31]. The buckling, vibration and deflecitons in a five-layer 

sandwich nanocomposite beam, with reinforcements of graphene platelets (GPLs) and shape memory alloys (SMAs), and a foam 

core was investigated and the Coriolis effect on the vibration analysis was investigated [32]. Studied the oscillation characteristics 

of circular graphene sheets under in-plane pre-load.  

Prior studies on vibration analysis in FGBs have made significant contributions to the comprehension of their dynamic 

properties and structural applicability. The findings of a comparative study indicate that there is an increasing variation in the 

geometric complexity along with material inhomogeneity of FGBs. Research has also investigated the deflections in FGBs when 

subjected to homogenous loads, with a focus on the impact of geometrical parameters on structural analysis. The assessment of 

FGB vibrations has been conducted using various kinds of solution techniques, including analytical, semi-analytical, and numerical 

approaches.  

This research paper highlights a significant gap in existing literature, highlighting a lack of comprehensive exploration of free 

vibration characteristics in TDFGTBs using RHSDT. This study aims to create a model of a TDFGTB, extract the governing 

equation that describes the vibration characteristics of the TDFGTB. This will be done by employing the displacement fields and 

stress-strain relations, which are based on Hooke's law. The solution to the governing equation will be achieved using the Ritz 

technique. The accuracy of the developed beam model is confirmed by comparing it with existing data in scientific literature, and 

further verified by considering both alumina and aluminum as potential materials for the beam to thoroughly investigate the 

behavior of free vibration in TDFGTB, adapting RHSDT under different boundary conditions. Vibration analysis of TDFGTB 

using RHSDT is essential for understanding the dynamic behavior of functionally graded taper beams, facilitating their design, 

analysis, and optimization in various engineering applications such as aerospace, automotive, civil structures, and biomedical 

devices. 

2. Nomenclature 

x, y, z  Different coordinates along length, width, thickness directions of beam 

TD   Two dimensional 

FGB   Functionally graded beam 

SS   Simply supported  

CC   Clamped-clamped 

L   Length  

K  Kinetic energy 

h   Height  

𝑉𝑓   Volume fraction  

Pz   Gradient index in thickness direction  

Px   Gradient index in length direction 

F(z)   Shear shape function 

HSDT  Higher order shear deformation theory 

E   Modulus of elasticity 

μ   Poisson’s ratio 

ρ  Mass density α coefficient of porosity 

𝑓(z)   Shear shape function 𝜎𝑥 Axial stress 𝜏𝑥𝑧 Shear stress 

RHSDT Refined higher-order shear deformation theory 

U  Strain energy 

c  Ceramic 

m  Metal 

n  Taperness parameter 

TBT  Timoshenko beam theory  

3. Material properties of TDFGTB 

The study favors TDFGTBs due to their variation in composition, material parameters, and thickness. The non-uniform beams 
have h2 and h1 thicknesses, determined by the equation h(x) = h2 [1 - n(x/L)]. The prevailing view is based on fundamental 

assumptions. 

• In accordance with the Cartesian coordinate system, the point of origin is situated on the neutral surface of the FG beam. 

• In comparison to the transverse normal stress, σz, the normal stress in the plane, σx, is virtually insignificant. 

• In order to satisfy the criteria for the lower and upper beam boundaries, this theory requires the application of a shear 

correction factor and operates under the supposition of a constant transverse shear stress. 

RHSDT is adopted in this study as it includes higher-order terms in the displacement field compared to conventional theories. 

These additional terms account for effects like transverse shear deformation and thickness stretching, which are significant in thin 

structures but are neglected in simpler theories. 
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Fig 1 : Geometry of FG Taper Beam. 

Fluctuations in the volume proportion of the component materials cause TDFGTB properties to constantly fluctuate. Let's consider 

a functional correlation between the thickness coordinate and certain material properties. The volume fraction of metal (Vm) can 

be mathematically represented using the power law equation [16]. 

𝑉𝑓(𝑥, 𝑧) =  (
𝑥

𝐿
)
𝑝𝑥

(
1

2
+

𝑧

ℎ(𝑥)
)
𝑝𝑧

                                         (1) 

 

TDFGTB's material characteristics are as follows [16] : 

𝑃(𝑥, 𝑧) = (𝑃𝑐 − 𝑃𝑚)(
𝑥

𝐿
)
𝑝𝑥

(
𝑧

ℎ(𝑥)
+

1

2
)
𝑝𝑧

+ 𝑃𝑚        (2) 

‘m’ stands for metal phase and ‘c’ for ceramic phases. 'Px' and 'Pz' denote power law exponents. As illustrated in Fig 2, the power 

law exponents are (Px = Pz = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1). 

 
Fig 2 :  Metal volume fractions in the direction of length (x/L) and thickness (z/h). 

3.1. TDFGTB Formula 

The following is a list of the TDFGTB's density ("ρ"), Poisson's ratio ("μ"), and modulus of elasticity ("E") [16]. 

𝐸(𝑥, 𝑧) = (𝐸𝑐 −𝐸𝑚) (
𝑧

ℎ(𝑥)
+

1

2
)
𝑝𝑧

(
𝑥

𝐿
)
𝑝𝑥

+𝐸𝑚        (3) 

𝜌(𝑥, 𝑧) = (𝜌𝑐 − 𝜌𝑚) (
𝑧

ℎ(𝑥)
+

1

2
)
𝑝𝑧

(
𝑥

𝐿
)
𝑝𝑥

+ 𝜌𝑚        (4) 

3.2. Constitutive equations of displacement 

RHSDT with a shear strain function is considered in order to illustrate the displacement equations [2]. 

𝑢(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧
𝜕𝑤0

𝜕𝑥
(𝑥, 𝑡) + 𝑓(𝑧)𝜙(𝑥, 𝑡)         (5)  

𝑤(𝑥, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑡)           (6) 

u0, w0, and 
𝑑𝑤0

𝑑𝑥
 indicate "axial displacement ", "transverse displacement ", and "shear slope " at a given position on a neutral axis. The 

displacement fields offer a versatile foundation for representing intricate deformations in structures. By decomposing the 

displacement into primary and additional components, the beam model is able to accommodate different loading situations and 

boundary conditions, resulting in a more precise depiction of the structural response. The additional displacement term 𝑓(𝑧)𝜙(𝑥, 𝑡) 
allows for the incorporation of any other applied loads or boundary conditions that may affect the structural response. This 
flexibility enables the model to capture a wide range of loading scenarios, including external forces, thermal effects, or constraints 

imposed by the surrounding environnement. Utilizing the inverse elastoplastic function, or shear shape function, f(z) [2], to 

calculate the transverse shear deformation distribution. 

ԑ𝑥 =
𝜕𝑈

𝜕𝑥
=

𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤0

𝜕𝑥2
+ 𝑓(z) (

𝜕𝜙

𝜕𝑥
)         (7) 

ԑ𝑧 =
𝜕𝑤

𝜕𝑧
= 0            (8) 

𝛾𝑥𝑧 = 𝑓
′(z)∅                 (9) 

𝑓(𝑧) = 𝑧 [1 −
4

3
(
𝑧

ℎ
)
2

]                     (10) 

𝑓′(𝑧) = [1 − 4(
𝑧

ℎ
)
2

]           (11) 
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where, 

ԑ𝑥 is strain in x-direction 

ԑ𝑧= strain in z-direciton 

𝛾𝑥𝑧= shear strain 

As Hooke's rule is always obeyed by the beam in FGMs, the behavioural relations may be expressed in the following format : 

{
𝜎𝑥
𝜏𝑥𝑧
} = [

𝑄11(𝑧) 0

0 𝑄55(𝑧)
] {
𝜀𝑥
𝛾𝑥𝑧
}                     (12) 

𝑄11(z) =
𝐸(𝑥,𝑧)

1−𝜇2
                       (13) 

𝑄55(𝑧) =  
𝐸(𝑥,𝑧)

2(1+𝜇)
                       (14) 

3.3. Motion-Governing Equations  

From Hamiltonian principle the equations of motion are derived and can be expressed as follows in the time span [0, t]: 

∫ 𝛿(𝑈 − 𝐾)
𝑇

0
𝑑𝑡 = 0                      (15)  

Where δk denotes the fluctuation of kinetic energy and δU denotes the variation of strain energy [4]. 

Strain Energy, 𝑈 =
1

2
 𝜎  𝜀  𝑉                           (16) 

Kinetic Energy, 𝐾 =
1

2
  𝑚  𝑉2 

  = 
1

2
  𝜌  𝑣   𝑉2                                         (17) 

3.4. Formulation of free vibration 

Bi-directional functionally graded beam's strain energy can be expressed as [4] : 

𝑈 =
1

2
∫ ∫ (𝜎𝑥𝜀𝑥  + 𝜏𝑥𝑧𝛾𝑥𝑧)𝑑𝑧𝑑𝑥

+
ℎ

2

−
ℎ

2

𝐿

0
                              (18) 

Equations (8), (10), (13), and (14), respectively, are substituted into Equation (18), the strain energy can be expressed as, 

𝑈 =
1

2
∫ ∫ (

𝐸(𝑥,𝑧)

1−𝜇2
ԑ𝑥𝜀𝑥  +

𝐸(𝑥,𝑧)

2(1+𝜇)
𝛾𝑥𝑧𝛾𝑥𝑧)𝑑𝑧𝑑𝑥

+
ℎ

2

−
ℎ

2

𝐿

0
                    (19) 

U =
1

2
∫ ∫ [(

E(x,z)

1−μ2
((

∂u0

∂x
)
2

− 2z
∂u0

∂x

d2w0

dx2
+ 2 f(z)

∂u0

∂x

∂∅

∂x
+ z2 (

d2w0

dx2
)
2

− 2 f(z)
d2w0

dx2

∂∅

∂x
+ (f(z))2 (

∂∅

∂x
)
2

)) +
+
h

2

−
h

2

L

0

E(x,z)

2(1+μ)
(∅2(f′(z))2)] 𝑑𝑧𝑑𝑥            (20) 

The kinetic energy of TDFGTB can be written in similar way : 

𝐾 =
1

2
∫ ∫ [(𝜌(𝑧) ((

𝜕𝑢0

𝜕𝑡
)
2

− 2z
𝜕𝑢0

𝜕𝑡

𝑑2𝑤0

𝑑𝑥𝑑𝑡
+ 2 f(z)

𝜕𝑢0

𝜕𝑡

𝜕𝜙

𝜕𝑡
+ 𝑧2 (

𝑑2𝑤0

𝑑𝑥𝑑𝑡
)
2

− 2 f(z)
𝑑2𝑤0

𝑑𝑥𝑑𝑡

𝜕𝜙

𝜕𝑡
+ (f(z))2 (

𝜕𝜙

𝜕𝑡
)
2

))+
+
ℎ

2

−
ℎ

2

𝐿

0

𝐸(x,z)

2(1+𝜇)
(𝜙2(f′(z))2)]𝑑𝑧𝑑𝑥                                                          (21) 

The displacement functions display the kinematic boundary conditions, which are represented in terms of generalized coordinators 

and expressed in infinity dimensions in Lagrange equations derived from Hamilton's principle [4]. 

u(x, t) = ∑ Ajθj(x)e
iωtm

j=1 ,   𝜃𝑗(𝑥) = (𝑥 +
𝐿

2
)
𝑝𝑢
(𝑥 −

𝐿

2
)
𝑞𝑢
𝑥𝑚−1      (22) 

𝑤(𝑥, 𝑡) = ∑ 𝐵𝑗𝜑𝑗(𝑥)𝑒
𝑖𝜔𝑡𝑚

𝑗=1 ,     𝜑𝑗(𝑥) = (𝑥 +
𝐿

2
)
𝑝𝑤
(𝑥 −

𝐿

2
)
𝑞𝑤
𝑥𝑚−1                            (23) 

𝜙(𝑥, 𝑡) = ∑ 𝐶𝑗𝜓𝑗(𝑥)𝑒
𝑖𝜔𝑡𝑚

𝑗=1 ,    𝜓𝑗(𝑥) = (𝑥 +
𝐿

2
)
𝑝𝜙
(𝑥 −

𝐿

2
)
𝑞𝜙
𝑥𝑚−1                 (24) 

Boundary constraints for the proposed shape functions are 𝜃𝑗 (𝑥),  φj(𝑥) and ψj(𝑥).The complex numbers 𝑖 = √−1 should be used 

to calculate the unknown coefficients Aj, Bj and Cj. By substituting the Equations. (22), (23) and (24) into (20) and (21) and then 

using Lagrange equations, deduced the governing equations of motion. 
∂U

∂qj
+

∂

dt
(
∂k

∂qj
) = 0                                          (25) 

As a result of using qj to represent the values of Aj, Bj and Cj, 

[
 
 
 
 
[𝑆11]

[𝑆12]
𝑇

[𝑆13]
𝑇

[𝑆12]

[𝑆22]

[𝑆23]
𝑇

[𝑆13]

[𝑆23]

[𝑆33]]
 
 
 
 

− 𝜔2

[
 
 
 
 
[𝑀11]

[𝑀12]
𝑇

[𝑀13]
𝑇

[𝑀12]

[𝑀22]

[𝑀23]
𝑇

[𝑀13]

[𝑀23]

[𝑀33]]
 
 
 
 

{
 
 

 
 
𝐴

𝐵

𝐶}
 
 

 
 

=

{
 
 

 
 
{0}

{0}

{0}}
 
 

 
 

                        (26) 

The “stiffness” and “mass matrices” are denoted by [Ski] and [Mki], respectively. There must be symmetry and a maximum size 

for the stiffness and mass matrices. The stiffness and mass matrix's constituent parts are provided by, 

𝑆11(𝑖, 𝑗) = ∫
𝐸(𝑥,𝑧)

1−𝜇2

𝐿/2

−𝐿/2
[(𝑥 +

𝐿

2
)
𝑝𝜃

(𝑥 −
𝐿

2
)
𝑞𝜃

𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝𝜃

(𝑥 −
𝐿

2
)
𝑞𝜃

𝑥𝑗−1] 𝑑𝑧𝑑𝑥                (27) 

𝑆12(𝑖, 𝑗) = −2z ∫
𝐸(𝑥,𝑧)

1−𝜇2

𝐿/2

−𝐿/2
[(𝑥 +

𝐿

2
)
𝑝𝜃

(𝑥 −
𝐿

2
)
𝑞𝜃

𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝φ

(𝑥 −
𝐿

2
)
𝑞φ

𝑥, 𝑥𝑗−1] 𝑑𝑧𝑑𝑥            (28) 

𝑆13(𝑖, 𝑗) = 2𝑓(𝑧) ∫
𝐸(𝑥,𝑧)

1−𝜇2

𝐿/2

−𝐿/2
[(𝑥 +

𝐿

2
)
𝑝𝜃

(𝑥 −
𝐿

2
)
𝑞𝜃

𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝ψ

(𝑥 −
𝐿

2
)
𝑞ψ

𝑥𝑗−1] 𝑑𝑧𝑑𝑥          (29) 
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𝑀23(𝑖, 𝑗) = −(2 𝑓(𝑧)) ∫ 𝜌(𝑧)
𝐿

2

−
𝐿

2

[(𝑥 +
𝐿

2
)
𝑝φ

(𝑥 −
𝐿

2
)
𝑞φ

𝑥, 𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝ψ

(𝑥 −
𝐿

2
)
𝑞ψ

𝑥𝑗−1] 𝑑𝑧𝑑𝑥 + (𝑓(𝑧))2 ∫ 𝜌(𝑧)
𝐿

2

−
𝐿

2

[(𝑥 +

𝐿

2
)
𝑝φ

(𝑥 −
𝐿

2
)
𝑞φ

𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝ψ

(𝑥 −
𝐿

2
)
𝑞ψ

] 𝑑𝑧𝑑𝑥         (37) 
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4. Results and discussion 

The factors that influence the vibration behaviour of TDFGTB are taper ratio, aspect ratio, gradation exponents and material 

property gradient. The taper ratio as well as the aspect ratio interact to establish the overall shape and distribution of stiffness in 

the beam. Increased taper ratios, when paired with decreased aspect ratios, yield more pronounced fluctuations in stiffness over 

the length of the beam. This, in turn, leads to the emergence of intricate vibration patterns and potentially higher frequencies of 

vibration modes. The gradation exponents determine the speed at which material qualities vary within the layers of FGMs. By 

including material property gradients, such as varying Young's modulus towards the outer surface of the beam, the stiffness profile 

and dynamic response of the beam are affected. When the gradation exponents are higher and there are steep gradients in material 

properties, the stiffness as well as mass distribution vary more significantly, resulting in noticeable differences in vibration 

characteristics. The numerical studies based on RHSDT shown in Table 1 are performed to predict the static analyses of TDFGTB 

with various boundary conditions, like SS and CC. Vibration analysis is discussed and shows that the existing hypothesis is 

accurate. Results constructed of "alumina" and "aluminium" with the following material properties are taken into account for the 

TDFGTB model : 

"Alumina" : Ec=380 Gpa,  𝜌𝑐 = 3960
kg

m3, μc= 0.3 

"Aluminum" : Em= 70 Gpa, 𝜌𝑚 = 2702
kg

m3, μm= 0.3 

 

Table 1 : Numerical calculations based on kinematic boundary conditions (BC).  

BC x = -L/2 x = +L/2 

SS u=0, w=0 w=0 

CC u=0, w=0, ϕ=0, w’=0 u=0,w=0, ϕ=0, w’=0 

The characteristics of the TDFGTB material fluctuate in axial ( “L”) and thickness (“h”) directions, according to power-law 

distribution. The dimensionless frequency (λ) parameter is used to represent the results. 

𝜆 =
𝜔𝐿2

ℎ
√
𝜌𝑚

𝐸𝑚
                                       (39) 

4.1. Validation 

The selection of taper ratios, aspect ratios, and gradation exponents for beam analysis involves a balance between structural 

requirements, geometric constraints, numerical considerations, and the objectives of the study. These parameters play a crucial role 

in defining the geometry and behavior of the beams under investigation and are chosen thoughtfully to ensure the relevance and 
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reliability of the analysis. For the numerical analysis, it is assumed that the material properties of the beam are homogeneous 

throughout, the material behaviour is linear and the load is distributed uniformly to facilitate the present investigation. A thorough 

and meticulous validation of the TDFGTB using RHSDT is performed using the nondimensional frequency as equation (39). Table 

2 displays the results and comparisons based on idealized beams with various BCs. The current study's findings slightly deviate 

from those published by Shanab et al. [16]. For the CC beam, the frequency results in Table 3 are also the same; the deviation is 

attributed to the fact that the present study deals with the RHSDT, in which the shear stress is made zero at the top and bottom 

surfaces of the beam for accuracy result, whereas Shanab et al. [16] theory was related to the TBT, in which the shear shape 

function and the shear factor couldn’t be considered.  

Table 2 : Comparison of frequency values of SS TDFGTB based on taper ratio (n=0.0), and "gradation exponents " (p) at L/h = 5 

Theory P=0 P=0.5 P=1 P=2 P=5 P=10 

TBT [16] 10.5 14.4 15.7 16.7 17.3 17.5 

RHSDT 11.4 

 

15.5 

 

16.5 

 

17.5 

 

18.3 

 

18.3 

 

% Error 7.1% 6.8% 4.9% 4.6% 5.3% 5.4% 

Table 3 : Comparison of frequency values of SS 2D-FGTB based on "different taper ratio " (n=0.5), and "gradation exponents" (p) at L/h = 5 

Theory P=0 P=0.5 P=1 P=2 P=5 P=10 

TBT [16] 12.8 17.7 19.3 20.5 21.2 21.3 

RHSDT 13.9 

 

18.8 

 

20.4 

 

21.5 

 

22.2 

 

22.3 

 
% Error 7.1% 5.5% 5.0% 4.8% 4.6% 4.6% 

Table 2 compares the frequency results of RHSDT and TBT for SS beams, determined by the gradation exponent. RHSDT 

exhibits a higher frequency than TBT due to the implementation of the shear correction factor. We found a higher error percentage 

when comparing the results of the present study with [16]. The large difference in error is because [16] used TBT in the 

displacement direction only, without utilizing the shear correction factor. Rather, in the present study, a shear correction factor is 

considered in the refined shear deformation theory to fulfill the zero-shear stress on the top and bottom surfaces of the beam. Table 

3 displays the comparison of the frequency results obtained from RHSDT and TBT for an SS beam with respect to the taper ratio. 

As the taper increases, it is observed that the frequency rises as well, which is influenced by the changing geometry. 

Table 4 : Frequency values of SS TDFGTB based on different taper ratio " (n = 0.0 and 0.5), "aspect ratio " (L/h=5) 

n pz Px 

0 0.5 1 2 5 10 

0.0 0 11.4  13.5 14.8 16.3 17.7 18.1  

0.5 13.8 15.5  16.3 17.3 18.0 18.3  

1 14.6 15.8 16.5  17.3 18.119 18.3  

2 15.4 16.4 16.9 17.5  18.2 18.3  

5 16.4 17.0 17.4 17.8 18.3 18.4  

10 17.1 17.5 17.7 18.0 18.4 18.5  

0.5 0 13.9  16.8  18.4 20.2 21.8 22.2 

0.5 16.8 18.8  19.9 21.0 22.0 22.3 

1 17.8 19.5 20.4  21.3 22.1 22.3 

2 18.8 20.1 20.8 21.5  22.2 22.3 

5 20.1 20.9 21.3 21.8 22.2  22.3 

10 20.9 21.4 21.7 22.0 22.3  22.3  

Table 5 : Comparision of frequency values of CC TDFGTB based on different taper ratio (n=0.1 & 0.5) at aspect ratio (L/h=5). 

Theory P=0 P=0.5 P=1 P=2 P=5 P=10 

RHSDT at n = 0.0 17.8 

 

21.6 

 

22.9 

 

23.9 24.6 24.7 

 
RHSDT at n = 0.5 19.4 

 

24.2 

 

25.8 

 

27.0 

 

27.7 

 

27.8 

 

Table 6 : Frequency values of SS TDFGTB based on different taper ratio (n=0.0, 0.5), aspect ratio (L/h=5). 

n Pz Px 

0 0.5 1 2 5 10 

0.0 0 17.8  19.9 21.2 22.6 24.1 24.5  

0.5 20.2 21.6 22.5 23.4 24.3 24.6  

1 21.0 22.2 22.9  23.7 24.4 24.6  

2 21.8 22.8 23.3 23.9  24.5 24.6  

5 22.8 23.4 23.8 24.2 24.6 24.7  

10 23.5 23.9 24.1 24.4 24.6 24.7  
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0.5 0 19.4  22.2  23.9  25.6  27.2  27.6  

0.5 22.3 24.2  25.3  26.5  27.5  27.7 

1 23.3 24.9 25.8  26.7  27.5  27.7  

2 24.3 25.6 26.3  27.0  27.6  27.8  

5 25.5 26.3 26.8  27.3  27.7  27.8  

10 26.4 26.9 27.2  27.5  27.7  27.8  

 

Fig 3 : Frequency values of SS TDFGTB at "aspect ratio " (L/h=5), "taper ratio " (n=0.0) 

 

Fig 4 : Frequency values of SS TDFGTB at aspect ratio (L/h=5), taper ratio (n=0.5) 
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Fig 5 :  Frequency values of CC TDFGTB at aspect ratios (L/h= 5), taper ratio (n=0.0) 

 

 

Fig 6: Frequency values of CC TDFGTB at aspect ratios (L/h= 20), taper ratio (n=0.5) 

Under SS boundary conditions, the suggested theory is applied to assess and compare the results of free vibration with those 

anticipated by a taper nanobeam [16]. Satisfactory results are predicted by the presented theory. The remaining numbers, as shown 

in Table 5, are likewise appropriate for CC. Since the beam width is constant in this case, the applied load is constant along the 

length of the beam, but “moment of inertia” and “elastic modulus” vary with the beam length. The effects of the non-uniform 

parameter on the thickness variation, h(x), as well as the maximum dimensionless vibration at different power-law exponents and 

supporting types are discussed. The variation in the moment of inertia is caused by the change in thickness that takes place 

throughout the length of the beam. Table 4 and Table 6 show that the dimensionless frequency would rise for all types of supporting 

structures. Fig 3 and Fig 4 show that for SS beams and Fig 5 and Fig 6 show that the non-uniformity parameter reduces with n, 

however, the increase is dependent on the types of supporting elements. 

Fig. 3 indicates the frequency differences between the TBT and the RHSDT for the SS beam at zero taper. The frequency 

increases with an increase in the gradient indexes in the x and z directions because the beam is transformed from metal to ceramic. 

In ceramic, the young modulus is higher than in metal, so the ceramic is stiffer and tends to vibrate at higher frequencies. Fig. 4 
indicates the frequency differences between the TBT and RHSDT for the SS beam at 0.5 taper. The frequency increases with an 
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increase in the gradient indexes in the x and z directions because the beam convert from metal to ceramic. In ceramic, the young 

modulus is higher than in metal so the ceramic is stiffer and tends to vibrate at higher frequencies. Fig. 5 indicates the frequency 

at RHSDT for the CC beam at zero taper. The frequency increases with an increase in the gradient indexes in the x and z directions 

because the beam convert from metal to ceramic. In ceramic, the young modulus is higher than in metal, so the ceramic is stiffer 

and tends to vibrate at higher frequencies. Fig. 6 indicates the frequency at RHSDT for the CC beam at 0.5 taper ratio. The 

frequency increases with an increase in the gradient indexes in the x and z directions because the beam convert from metal to 

ceramic. In ceramic, the young modulus is higher than in metal, so the ceramic is stiffer and tends to vibrate at higher frequencies. 

As Table 4, the SS beam shows the highest rate of dimensionless frequency when compared to other supports such as CC. The 

placement of the clamped end, the distribution of young modulus, and the change in the moment of inertia were the key factors 

that affected the maximum dimensionless frequency and its rate of change. The taper ratio of a TDFGTB can lead to changes in 
the distribution of mass and stiffness along the length of the beam. This alteration can affect the natural frequencies of vibration 

modes. Higher taper ratios generally result in higher frequency responses due to the concentration of mass/stiffness towards one 

end of the beam. The aspect ratio (length-to-width ratio) of the beam can influence its bending behavior. For slender beams (high 

aspect ratios), higher frequency responses are typically observed due to the dominance of bending deformation modes. However, 

extremely high aspect ratios might introduce buckling instability, which can affect the frequency responses differently. 

In contrast to the effects of thickness variation and the combination of thickness variation and width variation, where it has the 

greatest effects, the effects of width variation on the vibration in the beam are often not significant. Reducing the non-uniformity 

parameters implies that variances are causing the dimensionless vibration to rise. An SS beam experiences a rise in dimensionless 

vibration in addition to a change in the maximum dimensionless vibration's position due to the impacts of width variation, thickness 

variation, and both width and thickness variation. Variations in thickness as well as width contribute to an increase in dimensionless 

vibration. In most situations, the mid-span of an SS beam corresponds to the point of maximum vibration (i.e., x = l/2). It appears 

that both variations in the elastic modulus distribution and variations in the beam size cause the position of the dimensionless 

vibration to vary. 

The introduction of a RHSDT for studying the vibration behavior of TDFGTB resulted in the presence of computational 

complexity. The incorporation of higher-order elements required a more complex formulation and technique for finding a solution. 

In order to tackle this difficulty, rigorous validation and verification procedures were carried out to guarantee the precision of the 

numerical implementation. Ensuring the satisfaction of boundary conditions posed challenges, particularly in formulating 

admissible functions to meet the prescribed constraints. The incorporation of Ritz-type solutions using algebraic polynomials 

facilitated the fulfillment of boundary conditions in both directions, while convergence studies were conducted to validate the 

chosen boundary conditions and ensure their consistency with physical principles. 

5. Conclusions 

This work uses a variational formulation based on RHSDT to construct a TDFGTB model. Constructed equations and related 

border conditions that take vibration and the neutral axis into account while applying the Hamilton principle concurrently. This is 

achieved by applying the two concepts at the same time. Apart from the properties of the material, the model is composed of 

surface elasticity constants and a material length scale parameter that change along the length and thickness directions of the beam 

according to the power law. The TDFGTB model was developed using Ritz solutions, which yielded an analytical solution for the 

vibration responses of SS and CC TDFGTB. Ritz Solutions looked into how different material and geometrical parameters affected 

the vibration responses using a thorough parametric analysis. The following is a summary of the main findings: 

• The utilization of RHSDT captures the complexities of TDFGTBs' vibration behavior and also, by employing Lagrange 

equations and Ritz-type solutions, the study validates the applicability of RHSDT in modeling FGM structures, thereby 

contributing to the validation and refinement of analytical techniques for FGM analysis. 

• The surface residual stress and the structure effect make the beam stiffer, which raises the anticipated vibration. 

• The stiffness-hardening of the beam is increased by raising the gradient exponents in its thickness (Pz) and/or length (Px), which 
consequently increases its vibration. This is attributed to the variations in the material properties across the length and thickness 

of the beam. Furthermore, higher gradient index implies steeper variation leading to more significant changes in the stiffness. 

• The vibration of the taper beam is increased in proportion to the material's aspect ratio due to its stiffness-hardening effect. A 

higher aspect ratio typically corresponds to a longer and potentially narrower beam, which may exhibit greater stiffness-

hardening due to variations in material properties. Consequently, the beam becomes less flexible and more resistant to 

deformation, leading to increased vibration under applied loads. 

•  As the taper ratio decreases, the TDFGTB vibrates more, suggesting that the beam may eventually fracture. 

• The results serve as a benchmark for assessing the accuracy and reliability of existing beam theories in predicting the vibration 

behavior of TDFGTBs. This helps validate the efficacy of different analytical approaches and identifies areas for improvement 

in existing beam theories. 

 

Applications: In the field of structural engineering and design, understanding the frequency responses of bi-directional functionally 

graded taper beams is crucial. This information can be used to improve the design of buildings, bridges, and aerospace components 

to obtain better performance under varying loads, as well as other industries where high-performance and lightweight materials are 

essential. The beam's edges are assumed by RHSDT to be either clamped or merely supported. But in reality, a beam might have 

more intricate boundary conditions, such partially or freely clamped edges, which could compromise the accuracy of the study. 
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