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Abstract 

        In this research study, the hygro-thermo-mechanical responses of 

simply supported porous FG sandwich plates resting on a variable elastic 

foundation are studied by mean of a new height order shear deformation 

theory. The present model satisfies the nullity conditions of the shear stresses 

on the upper and lower surfaces of the FG plate and without using shear 

correction factors. The distribution of the properties of the material through 

the thickness of the sandwich plate is assumed to have a distribution 

according to a function of the power law, while the core is assumed to be 

purely ceramic. The derivation of the stability equations is obtained based on 

the principle of virtual works. The hygro-thermal loading is considered to 

have a uniform, linear and non-linear variation across the thickness of the 

plate. To verify the accuracy of the current model, a comparison was made 

with other authors of the literature. The effects of the hygro-thermo-

mechanical loading, the porosity, the parameters of the elastic foundation « 

kw and kg », the thickness ratio « a/h », the aspect ratio « a/b » and the 

material index « k » on the critical buckling load of the FG plate are 

examined. 

Keywords: FG sandwich plate, hygro-thermo-mechanical load, porosity, variable elastic foundation, 

stability equations. 

1. introduction 

Sandwich structures are widely used in the aviation, aerospace, naval/marine, construction, transportation, and 

wind energy systems industries due to their exceptional qualities, which include high rigidity and low weight 
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furthermore One novel application of this material is to reinforce concrete used in bridges, as fiber reinforced 

polymer (FRP) materials improve steel's resistance to corrosion and lengthen the material's life cycle.[1]. 

Applications in aerospace to support high thermal barrier coating include engine parts, spaceship trusses, Seebeck 

generators, rocket nozzles (TiAl metal SiC ceramic), high temperature heat exchanger panels, Aerotech, diesel, and 

polyurethane pipe.[2] 

 However, the abrupt variation in material characteristics within the interfaces between the face sheets and the 

core can result in large interlaminar stresses inducing delamination, which is an important problem in classical 

sandwich structures. Furthermore, the difference in the values of thermal coefficients of the materials may induce 

residual stresses. In order to solve these issues, the design of sandwich plates introduces the idea of functionally 

graded material (FGM) FGM is a type of advanced composite material in which the mechanical characteristics 

progressively and continuously vary from one surface of the structure to the other. The application of such materials 

aids in improving bonding strength and removing mechanically and thermally generated stresses resulting from 
material property mismatch. 

 To study the different behaviours of the thick FG sandwich plate, many analytical models are proposed. studied 

the stability of the porous FG sandwich plate under thermal load using the theory of first order shear deformation 

(FSDT). Al-Osta. investigates wave propagation in porous FG sandwich plates subjected to both thermal and 

moisture variations. While the main focus is wave propagation, the formulation employs a novel FSDT approach 

that considers the presence of porosity. This makes it applicable to studies analyzing the stability of porous FG 

sandwich plates under thermal loads as well[3]. WAN et al. [4] based on a new mathematical method (Differential 

Quadrature Hierarchical Finite Element Method) investigate how reinforcing a special plate with carbon nanotubes 

(CNTs) and carbon fibres (CFs) increases its stability, vibration, and energy absorption under various conditions 

Hadjlaoui et al. studied the temperature-dependent material properties were considered to perform a thermal 

buckling analysis. The performance of the present formulation based on FSDT is demonstrated through comparisons 
with existing studies on the thermal buckling of FGM shells[5]. Mohammadi, M., et al investigated the effect of 

viscos- Pasternak foundation on the vibration behavior of the nanobeam subjected on hygrothermal environment 

based on the differential quadrature method. They founded that the result obtained maybe could be used to design  

design and manufacture various structures similar to nano sensors, biosensors [6]Mantari et Granados proposed a 

new shear deformation model based on indeterminate integral terms for the bending analysis of sandwich plates with 

FG core and isotropic skins[7]. Sobhy studied the stability and dynamic behavior of EFG sandwich plates with 

different types of foundations using the shear deformation theory with five variables[8]. Mohammadi, M. A. 

Farajpour, and M. Goodarzi used principal of virtual work to drive the governing equation of rectangular graphene 

sheet for the free vibration behavior under shear in-plane load, then they are solved it based on DQM and Galerkin 

methods. It found that the vibration frequencies are strongly dependent on the small scale coefficient  Nguyen et al. 

have developed a high-order inverse tangential shear deformation theory to study the bending, buckling and free 

vibration of isotropic-core FG sandwich plate and FG skins and FG-core FG sandwich plate and isotropic skins[9]. 
Wave propagation of micro air vehicle wings with porous functionally graded materials (FGM) and magnetostrictive 

nanocomposite layers is studied by Al-Furjan et al.[10]based on new refined zigzag theory (RZT) and Halpin-Tsai 

material distribution model. Shan et al[11] present a review  on the effect of various nanoparticles on the mechanical 

behavior of nanocomposites such as flexural, tensile, interlaminar shearing strength, impact, vibration, thermal 

properties, buckling and post-buckling, fatigue behavior, and recent advances in improving these mechanical 

characteristics. Mohammadi, M., et al investigated the effect of temperature change and elastic medium on  the 

vibration behavior of annular and circular graphene sheet by employed Both Winkler and Pasternak foundation and 

they concluded that the non-dimensional frequency decreases at high temperature case with increasing the 

temperature change for all boundary conditions . Based on the HSDT, Chitour et al. employed a quasi-3D high-order 

theory to investigate the stability of functionally graded (FG) sandwich plates incorporating metallic foam cores. 

Their work, which is the first of its kind, explores how factors like gradient index, geometric properties, porosity 
distribution within the FG layers, and the metal foam itself affect the critical buckling load of these sandwich 

plates[12]. Mohammadi, M., et al analyzed the effect of porosity on the free and forced vibration of FG nanobeam 

under mechanical and electrical loads based on Hamilton’s and Galerkin methods and they found that the length-

scale parameters have crucial role on the nonlinear vibration of the structures[13] Belkhodja et al., investigated both 

thermal buckling and bending behavior of sandwich plates that have functionally graded (FGM) face layers. Their 

analysis employed a novel unified theoretical framework incorporating new quasi-three-dimensional and two-

dimensional higher-order shear deformation theories (HSDTs). This framework accounts for both shear strain, 

captured by a newly introduced shape function, and the stretching effect[14]. Chu et al.[15]investigated the energy 

dissipation and the induced as well as intrinsic resonances of non-rectangular composite nanoplates with an 

undulating edge, supported by a medium exhibiting fractional torsional viscoelasticity. The nanostructure comprises 

a core of alumina fortified with graphene platelets (GPLs), enveloped by flexoelectric and magnetostrictive 
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materials as the superior and inferior layers, respectively. The assessment of dimensional influences is extrapolated 

from a novel theoretical perspective on local/nonlocal interactions within a biphasic framework used shear 

deformable ring theory Moosavi, H. et al studied the free in-plane vibration of nanoring based on elasticity theory   

Sahoo et al., focused on the geometrically nonlinear thermal frequencies of functionally graded (FG) sandwich 

structures. They employed numerical methods to analyze these frequencies, considering both linear and nonlinear 

variations in temperature distribution. To perform this numerical analysis, the researchers developed their own finite 

element code within MATLAB. This code incorporates advanced techniques such as higher-order shear deformation 

theory (HSDT) and Green-Lagrange nonlinear strain kinematics[16]. Khayat et al., examined a cylindrical shell with 

a special three-layered sandwich functionally graded material (S-FGM). This shell comprised an outer layer made of 

ceramic with the thickness, a middle layer (FGM) with the thickness, and an inner layer made of metal with the 

thickness. the initial temperature of the entire shell was assumed to be the same as the surrounding environment 

(ambient temperature). However, the outer layer was then subjected to a sudden and significant temperature change, 
known as a thermal shock[17]. Natarajan et Manickam  studied the static and dynamic behavior of the sandwich 

plate FG using an 8-node quadrilateral plate element[18].Chu et al. [19]studied a theoretical assessment of the 

influence of a moving load and the integration of a piezoelectric patch on energy harvesting efficiency and the 

dynamic response of a Nano Conical Panel (NCP) composed of Shape Memory Alloy (SMA) situated atop a 

frictional foundation, utilizing the First-order Shear Deformation Theory (FSDT). Employing the mixture rule, the 

piezoelectric patch was enhanced with boron nitride nanotubes (BNNTs) known for their intelligent properties. To 

incorporate the effects at the nano-scale, a dual-phase nonlocal approach was implemented Mohammadi, M. et al 

extended a nonlocal elasticity theory to analyze the effect of the thermal environment on the vibration frequencies of 

mono-layer graphene sheet resting on elastic medium, it has been founded that the non-dimensional frequencies 

decreases with the increase of the temperature Akavci developed a new form of hyperbolic deformation function for 

the analysis of the different behaviors of the FG sandwich plate resting on the elastic Winkler-Pasternak 
foundation[20]. Using the FE formulation layer by layer based on the FSDT hypothesis (assumption), Pandey et 

Pradyumna examined the free vibration of the FG sandwich plate.[21]. Mohammadi et al. explored the impact of 

Coriolis effects on the vibrational behavior of a multilayer rotating piezoelectric nanobeam. The governing 

equations are derived based on nonlocal continuum and surface elasticity theories. Both axial and transverse 

governing equations are affected by the Coriolis effects. To determine the vibration frequencies of the multilayer 

piezoelectric nanobeams, we employ the differential quadrature method (DQM).Wan et al.[22]investigated the 

supersonic flutter characteristics and dependability of intelligent hybrid nanocomposite trapezoidal plates, taking 

into account a multitude of operational considerations. The structure undergoes analysis under yawed flow 

conditions, which is a common occurrence in supersonic aviation. Given the critical role that hybrid nanocomposites 

play in a range of fields, including aerospace and public safety devices, the study integrates a hybrid nanocomposite 

core layer fortified with carbon nanotubes (CNTs) and carbon fibers. This enhancement reflects the material’s real-

life complexities, such as fiber agglomeration, waviness, and stochastic fiber orientation, within the analytical 
framework. Mohammadi et al.examines how vibrations travel through layered, tiny beams made of a material that 

can convert pressure into electricity (piezoelectric). The researchers used a theory established for thicker beams 

(Timoshenko beam theory) to describe the equations that govern the movement of these rotating, ultra-thin beams. 

They then considered two advanced theories (nonlocal continuum theory and surface elasticity theory) to create a 

more precise equation that describes how these beams move. Mohammadi et al. examines how vibrations travel 

through tiny, layered beams made of a material that can convert pressure into electricity (piezoelectric). This 

research analysed these vibrations using established theories for thicker beams (Timoshenko beam theory) and 

considered more advanced theories (nonlocal continuum theory and surface elasticity theory) to create a more 

precise description of how these ultra-thin, spinning beams vibrate. Mohammadi et al. explores how a single layer of 

graphene (a single-layered graphene sheet, or SLGS) vibrates naturally when stretched (in-plane pre-load). The 

study considered two theories: one commonly used for thin plates (Kirchhoff plate theory) and another that accounts 
for the unique behavior of materials at very small scales (nonlocal elasticity theory). By combining these theories, a 

precise equation describing the vibration of the graphene sheet was derived. This equation predicts the vibration 

frequencies, with a special property of the material (the nonlocal parameter) affecting the calculations.  

The main limitation of the present model compared to computational methods is the stretching effect. In other 

words, the present model could be only used for 2D plate theories. Moreover, the current theory uses four terms in 

kinematics and involves fewer governing equations than the conventional theories. Its solutions compare well with 

quasi-3D and 2D solutions. Additionally, this model simplifies the problem and considers the effect of transverse 

shear, which is not considered in the case of first and classical plate theories. 

The aim of this work is to propose a theory with four unknowns to examine the hygrothermal-mechanical 

stability of a simply supported sandwich plate FG resting on a variable elastic foundation. The transverse shear 

effect is considered without any correction coefficient. The stability equations of the FG sandwich plate are derived 

https://link.springer.com/article/10.1007/s00707-022-03430-0
https://link.springer.com/article/10.1007/s00707-022-03430-0
https://link.springer.com/article/10.1007/s00707-022-03430-0
https://link.springer.com/article/10.1007/s00707-022-03430-0
https://link.springer.com/article/10.1007/s00707-022-03430-0
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using the principle of virtual work, the Navier solution is retained for the resolution of this system of equation and 

for obtaining the critical buckling load. In addition, the effectiveness and accuracy of the current theory is confirmed 

by comparing the calculated results with those published. Then, several parametric studies are presented and 

discussed in details. 

2. Mathematical formulation 

The geometry and dimensions of the sandwich FG plate made are represented in Fig. 1. rectangular plate in FGM 

material of thickness "h", length "a" and width "b", are employed to describe infinitesimal deformations of a three-

layer sandwich elastic plate 

 
Fig 1: Geometries of the FGM plate 

 

 

The material properties of each layer, such as thermal conductivity "K", Young's module "E", Poisson's 

ratio "ν", coefficient of thermal expansion "α" and coefficient of moisture expansion   "β ", are influenced by various 

factors such as porosity. In this work, the effect of porosity is studied. Many porosity distribution models have been 

proposed by researchers to calculate the mechanical properties of materials of porous plates in FGM [23-26]. The 

porosities are distributed independently in each layer of the FGM sandwich plate. Four porosity models are used: 
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Non-uniform logarithmic distribution of pores (Imperfect III): 



Journal of Computational Applied Mechanics 2024, 55(4): 617-635 621 

( )

( )

0 1(1) (1)

1 0

3 2(3) (3)

3 2

2
( ) ( )* ( ) log 1 ( ) 1

2

2
( ) ( )* ( ) log 1 ( ) 1

2

z h h
E z Ec Em V z Em Ec Em

h h

z h h
E z Ec Em V z Em Ec Em

h h





  − + 
= − + − + − −   

−     


 − +  
= − + − + − −  

−     

 (3) 

 

Non-uniform linear distribution of pores (Imperfect IV): 
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with "V((j))  is the volume fraction of the layer « j » given by: 
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The plate is assumed to be resting on a two-parameter elastic foundation model that consists of closely spaced 

springs interconnected through a shear layer made up of incompressible vertical elements, which only deforms by 

transverse shear. The response equation “Rf” of this foundation is given by: 
2
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with "K ̅" and "G ̅" are the Winkler and Pasternak coefficients respectively, whose Winkler coefficient depends on x, 

is assumed to be linear, parabolic and sinusoidal [27-29](Sobhy 2015, Attia et al. 2018, Pradhan and Murmu 2009):   
3
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The displacement field of the theory proposes perhaps written according to[30-33]: 
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With
0( , )u x y , 0 ( , )v x y , 0 ( , )w x y , and ( , )x y  are the four unknowns of displacement of surface mean 

(average) of the plate. 

Himeur et al [34] give the warping function retained: 
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The components of the deformation tensor are given by:: 
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The Navier's method is used to solve the integral terms given in the displacement field and can be expressed as: 
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The coefficients k1, k2, A and B  are given by: 
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  and   are given by the expression (27). 

2.1. The constitutive relations: 

The constitutive relations of this plate can be expressed by: 
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2.2. Stability equations: 

The principle of virtual work for the FG sandwich plate under a hygrothermal-mechanical load can be expressed 

as[30, 35] : 
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The resulting forces and moments are defined by: 
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Replacing the Eq. (10) in Eq. (12) and the result in the equation. (15) The resultants of the forces and moments are 

obtained in matrix form as: 
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With A11, B11 etc are rigidity components given by: 

( ) ( ) ( )( )
1

11 11 11 11 11 11 3
2 2

12 12 12 12 12 12 11

1

66 66 66 66 66 66

1

1, , , , ,

1

2

j

j

s s s
h

s s s

js s s h

A B D B D H

A B D B D H C z z f z zf z f z dz

A B D B D H



−
=

 
  
  

=   
   −   

 

   

( ) ( )22 22 22 22 22 22 11 11 11 11 11 11, , , , , , , , , ,s s s s s sA B D B D H A B D B D H=  

 
1

3
2( )

44 55 44

1

( ) ,

j

j

h

s s j

j h

A A C g z dz

−
=

= =   

(16.e) 

The resultants of the forces and moments due to hygrothermal loading are given by: 
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With 
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Assuming the terms of displacements ; ;  and  of the equilibrium state of the FG sandwich plate 

under hygrothermal loading. Using the terms ; ;  et  which represent the adjacent equilibrium state. 

General trips correspond to [30, 36] are: 

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0,  ,  , u u u v v v w w w   = + = + = + = +  (19) 

The stability equations of the plate can be obtained by the adjacent equilibrium criterion such as: 
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In which
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2.3. Variation of the hygrothermal load: 

In this study, the FG plate is subjected to three types of hygrothermal distributions through the thickness 

(Uniform, linear and non-linear). Each type of hygrothermal distribution is described in detail in the following:  

2.3.1. Uniform variation (UVT)  

In the first type, the FG sandwich plate is subjected to an initial temperature and humidity and, then the 

humidity and temperature were uniformly increased to the final values With 

,   =T, Cf i =  −   (23) 

2.3.2. Linear variation (LVT)  

The second type of hygrothermal distribution is linear and can be presented in the following form: 

( )
1

2
l

z
z

h

 
 =  + + 

 
 

,   =T, Cu l= −   

(24) 

With u  and l  are the temperature and humidity values at the bottom and top surface of the FG sandwich 

plate and u l =  − . 
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2.3.3. Non-linear variation (NLVT)  

In this case, the temperature of the upper surface is Tt and it is considered that it varies from Tt to Tb in which 

the plate is deformed, according to the variation of the power law through the thickness, up to the temperature of 

lower surface Tb. As a result, the increase of the temperature through the thickness is given by: 
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2
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z
z

h


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 

 (25) 

where is the hygrothermal exponent 1   . 

2.4. Analytical solution 

Based on the Navier’s solution[30, 37, 38], the displacement components which satisfy the boundary conditions 

are given by: 
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With Umn, Vmn, Wmn, Xmn are arbitrary parameters to be determined. μ and β are defined by: 
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Replacing the Eq. (26) in Eq. (19), the critical buckling load solution of the FGM sandwich plate can be obtained: 
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To obtain the non-trivial solution, the determinant A should be zero. By solving the equation 0A = , one 

can easily obtain the critical buckling load xN P=  and the critical buckling temperature crN T=  , 0x yP P= = . 

 

3. Results and discussion  

3.1. Comparative analysis: 

 

To verify the validity of the presented model, an FGM sandwich plate is used to compare the model's results 

with those of Menasria et al[31] and Bourada et al[39]. Therefore, two different materials are used. These are the 

alloy of titanium (Ti-6A1-4V) -Zirconia (ZrO2) and aluminum (Al) -Alumina (Al2O3). Tables 2, 3 and 4, represent 

results obtained for different types of sandwich plates of graded evaluated materials subjected to a uniform thermal 
load, linear and non-linear through the thickness compared with other theories of plates. The critical temperature 

variation (Tcr = 10-3ΔTcr) is determined for k = 0, 1, 2, 5 and ∞ and for different types of temperature distribution, 

as shown in the tables. We can see in the three tables that there is a very good correlation between the used theory 

and the other theories. The properties used in Tables 2,3 and 4 are: 

Ec=244.27 GPa, αc=12.766x10^(-6)/°C, E_m=66.2 GPa, α_m=10.3x10^(-6)/°C. While the properties used in 

table 5 are: 

 E_c=380 GPa, α_c=7.4x10^(-6)/°C, E_m=70 GPa and for table 6 and 7: E_c=151 GPa, α_c=7.4x10^(-6)/°C, 

E_m=70 GPa, with a constant Poisson's ratio« υ=0.3 ». The properties retained for the analysis of hygrothermal 

behavior are given in the following table: 

Table 1: Material properties of the plate 

Material Silicon nitride  (Si3N4 ) stainless steel (SUS304) 

E 348.43 201.04 

 5.8711 12.330 

K  13.723 15.379 

β 0.001 0.44 

ν 0.3 

All the results presented in this work are calculated using the following dimensionless parameter: 

2

3

cr
cr

m

N a
N

E h
=  

Table 2: The critical buckling temperature Tcr of a square sandwich plate under a uniform temperature variation (a/h= 5). 
k Theory (1-0-1) (1-1-1) (2-1-2) (3-1-3) 

0 

Present 3,23742 3,23742 3,23742 3,23742 

Menasria et al [31] 3,24034 3,24034 3,24034 3,24034 

Bourada et al[39] 3.23652 3.23652 3.23652 3.23652 

1 

Present 2,68530 2,58812 2,59065 2,60646 

Menasria et al [31] 2,69376 2,59191 2,59707 2,61374 

Bourada et al[39] 2.68781 2.58882 2.59241 2.60856 

2 

Present 2,62551 2,35816 2,39307 2,43596 

Menasria et al[31] 2,63896 2,36407 2,39953 2,44692 

Bourada et al [39] 2.63018 2.36000 2.39637 2.43977 

5 

Present 2,92612 2,20652 2,34322 2,45653 

Menasria et al[31] 2,94934 2,21632 2,35871 2,47451 

Bourada et al [39] 2.93446 2.21009 2.34898 2.46321 

∞ 

Present 4,01251 4,01251 4,01251 4,01251 

Menasria et al[31] 4,01613 4,01613 4,01613 4,01613 

Bourada et al[39] 4.01293 4.01293 4.01293 4.01293 

 

Table 1: The critical buckling temperature Tcr of a square sandwich plate under a linear temperature variation (γ=1 et a/h= 5). 

k Theory (1-0-1) (1-1-1) (2-1-2) (3-1-3) 

0 

Present 6,42484 6,42484 6,42484 6,42484 

Menasria et al [31] 6,43068 6,43068 6,43068 6,43068 

Bourada et al [39] 6.42305 6.42305 6.42305 6.42305 
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1 

Present 5,32061 5,12624 5,13129 5,16293 

Menasria et al [31] 5,33752 5,13382 5,14414 5,17747 

Bourada et al [39] 5.32562 5.12765 5.13482 5.16711 

2 

Present 5,20102 4,66632 4,73615 4,82191 

Menasria et al [31] 5,22793 4,67814 4,75538 4,84385 

Bourada et al [39] 5.21036 4.66999 4.74275 4.82954 

5 

Present 5,80224 4,36303 4,63645 4,86305 

Menasria et al [31] 5,84868 4,38263 4,66742 4,89903 

Bourada et al [39] 5.81891 4.37017 4.64797 4.87641 

∞ 

Present 7,97503 7,97503 7,97503 7,97503 

Menasria et al [31] 7,98226 7,98226 7,98226 7,98226 

Bourada et al [39] 7.97281 7.97281 7.97281 7.97281 

Table 4: The critical buckling temperature Tcr of a square sandwich plate under a non-linear temperature variation (γ=5 et a/h= 5). 

k Theory (1-0-1) (1-1-1) (2-1-2) (3-1-3) 

0 

Present 19,27450 19,27450 19,27450 19,27450 

Menasria et al [31] 19,29203 19,29203 19,29203 19,29203 

Bourada et al [39] 19.26915 19.26915 19.26915 19.26915 

1 

Present 22,38960 21,68600 21,96770 22,08670 

Menasria et al [31] 22,46081 21,71806 22,02269 22,12553 

Bourada et al [39] 22.41074 21.69196 21.98279 22,14890 

2 

Present 22,98800 21,96570 22,32160 22,49500 

Menasria et al [31] 23,10689 22,02137 22,41227 22,59731 

Bourada et al [39] 23.02926 21.98304 22.35275 22.53055 

5 

Present 23,64170 22,02710 22,55880 22,84740 

Menasria et al [31] 23,83092 22,12608 22,70953 23,01642 

Bourada et al [39] 23.70963 22.06317 22.61489 22.91015 

∞ 

Present 23,92510 23,92510 23,92510 23,92510 

Menasria et al [31] 23,94679 23,94679 23,94679 23,94679 

Bourada et al [39] 23.91843 23.91843 23.91843 23.91843 

The stability of FG plates (Al/Al2O3) under mechanical loading is studied by considering two types of 
loading in the plane: uniaxial compression (γ=0), bi-axial compressions (γ=1). The obtained results are presented in 

Table 5. It can be seen that the current results are again in good agreement with the results of Sekkal et al (2017), 

Nguyen (2015) and Thai and Choi (2012). The mechanical properties retained for the determination of the critical 

buckling load are shown in the following table: 

Table 2: Dimensionless critical load Ncr of a rectangular plate made of functionally graded material (FGM) (γ= 0,1 et a/b=0.5). 

γ a/h Theory 
Material index ‘’k’’ 

0 0.5 1 5 10 

0 

5 

Present 6,7217 4,4243 3,4170 2,1531 1,9240 

Sekkal & al [40] 6.7005 4.4728 3.4983 2.2076 1.9459 

Thai & Choi [41] 6.7203 4.4235 3.4164 2.1484 1.9260 

Nguyen 2015 6.7417 4.4343 3.4257 2.1459 1.9213 

10 

Present 7,4059 4,8209 3,7113 2,4180 2,1906 

Sekkal & al [40] 7.4126 4.8904 3.8221 2.5090 2.2374 

Thai & Choi [41] 7.4053 4.8206 3.7111 2.4165 2.1896 

Nguyen 2015 7.4115 4.8225 3.7137 2.4155 2.1911 

20 

Present 7,5994 4,9316 3,7931 2,4949 2,2693 

Sekkal & al [40] 7.6109 5.0028 3.9108 2.5963 2.3230 

Thai & Choi [41] 7.5993 4.9315 3.7930 2.4944 2.2690 

Nguyen 2015 7.6009 4.9307 3.7937 2.4942 2.2695 

1 

5 

Present 5,3774 3,5394 2,7336 1,7224 1,5391 

Sekkal & al [40] 5.3604 3.5783 2.7987 1.7661 1.5568 

Thai & Choi [41] 5.3762 3.5388 2.7331 1.7187 1.5370 

Nguyen 2015 5.3934 3.5475 2.7406 1.7167 1.5408 

10 

Present 5,9247 3,8567 2,9690 1,9344 1,7524 

Sekkal & al [40] 5.9301 3.9123 3.0577 2.0072 1.7899 

Thai & Choi [41] 5.9243 3.8565 2.9689 1.9332 1.7517 

Nguyen 2015 5.9292 3.8580 2.9710 1.9324 1.7529 

20 

Present 6,0794 3,9453 3,0344 1,9959 1,8154 

Sekkal & al [40] 6.0887 4.0022 3.1287 2.0770 1.8584 

Thai & Choi [41] 6.0794 3.9452 3.0344 1.9955 1.8152 

Nguyen 2015 6.0807 3.9445 3.0350 1.9953 1.8156 

3.2. Parametric study  
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Fig 2: Evolution of the critical buckling load of a sandwich plate (1-0-1) with: a) k=0, b) k=∞, c) k=2, depending on the geometric ratio 

« b/a » for different values of « ξ » , (a/h=10). 
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Fig 3: Variation of the critical buckling load of a square FG plate 

on a variable foundation (k=2, ξ=0, ζ=10, kw=kg=100). 

Fig 4: Variation of the critical buckling load of a square FG 

plate on a linear foundation (k=2, ζ=10, kw=kg=100). 

 

Figure 2. Shows the variation of the critical buckling load of three types of plates: ceramic, metallic and 

functionally graduated material (FGM) under mechanical loading and under the effect of porosity, and as shown in 

the figure, this critical buckling load decreased with increasing geometric ratio« b/a » and coefficient of porosity (ξ). 

For the two figures 3 and 4, the critical buckling load Ncr increases with the increase in the thickness ratio « a/h » to 

reach a maximum value for a ratio (a/h=10) and then stabilizes for the values (a/h>10), for curve 3 also represents 
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the variation of the critical buckling load depending on the type of foundation used and ,as shown in the figure, the 

obtained values  for a sinusoidal foundation are greater than those for parabolic foundations , while linear 

foundations take intermediate values, when the porosity coefficient does not influence the shape of the curve but it 

decrease the critical buckling load because of its influence on stiffens of the plate . 
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Fig 5: Variation of the critical buckling temperature of a sandwich plate (1-0-1) avec : a) k=0, b) k=∞, c) k=2, according to the 

geometrical ratio « b/a » for different values of « ξ » , (a/h=10). 
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Fig 6: Comparison of the critical buckling temperature of a plate: fully ceramic, fully metallic and FG sandwich (1-0-1), depending 

on the geometric ratio « b/a » , (k=2 , ξ=0.2 a/h=10). 
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Fig 7: Variation of the critical buckling load of a square FG 

plate on a variable foundation (k=2, ξ=0, kw=kg=100). 

Fig 8: Variation of the critical buckling load of a square FG 

plate on a linear foundation (a=b, k=2, kw=kg=100). 

Figure 5. Shows the change in critical buckling temperature for three types of plate: ceramic, metallic and 

functionally graduated (FGM) under the effect of porosity. It can be seen that the critical buckling decreasing with 

the increasing geometric "b / a" ratio such as the including of the porosity reduce the value of the critical buckling 

when the porosity coefficient increases and this because of its effect on the stiffness of the plate. Figure 6 shows a 
comparison between the three types of plate, whose values obtained for an FGM plate are between those of an all-

ceramic and all-metal plate. Figure 7. Shows variation of Tcr of a plate resting on three types of elastic foundation as 

a function of the thickness ratio "a / h". The same study for figure 8, but with a linear foundation and different 

values of the coefficient of porosity. In both cases, the critical buckling temperature decreased with the increase in 

the "a / h" ratio with a slight deviation caused by the type of foundation used in Figure 7 and the value of the 

porosity coefficient for Figure 8. 
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Fig 9: Change in the critical buckling temperature of an FG plate 

under the effect of humidity according on the aspect ratio « a/h », (a=b, 

k=2, kw=kg=0). 

Figure 9. Shows the variation of Tcr according to the “a / h” ratio for different humidity values, for the 

three humidity proportions the critical buckling temperature decreases rapidly with the increase in the « a/h » ratio 

and takes its minimum value for (a/h=30), and the rest of the curve is purely lowered. 

a) b) 
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Fig 10: Variation of Tcr according to the ratio « a/h » of a plate: a) perfect « ξ=0 », b) porous « ξ=0.1 » and c) porous « ξ=0.2 », for 

(a=b, k=2, kw=kg=0) 

 

Figure 10. Shows the variation of Tcr depending on the « a/h or three values of the porosity coefficient (for curve (a) 

« ξ=0 », (b) « ξ=0.1 » et (c) « ξ=0.2 ») with a humidity level ΔC=0,2. Thus the critical buckling temperature 
decreases rapidly with increasing "a/h" ratio and takes its minimum value for (a/h = 30), and the rest of the curve is 

purely lowered. 

4. Conclusions 

In the present work, the mechanical and hygrothermal stability of an FG sandwich plate resting on a variable 

elastic foundation is investigated, using a higher-order shear deformation theory including indeterminate integral 

terms. The plate stability equations are derived via the principle of virtual work. From the obtained results and the 

comparisons, we can conclude that: 

• The current theory is precise and efficient for determining the critical buckling values of plates subjected to 

hygro-thermo-mechanical loads. 

• Whatever the type of loading, the critical buckling value decreases with the increase in the geometric ratio 

"a/b" and increases with the increase in the thickness ratio "a/h". 

• The lowest values of the critical buckling load are given for the porous plate in the case of mechanical load. 

However, the highest values of the critical buckling temperature are given for porous plates. 

• Increasing the elastic foundation’s parameters (Kw, Kp) decreases the critical buckling load. 

• The rise in moisture concentration causes a rapid critical buckling temperature decrease. 

Finally, an improvement of the current formulation will be considered in future works to account for the effect of 

thickness stretching using models of quasi-3D shear deformation theories. 
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