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Abstract 

In this paper a quasi-three-dimensional (3D) refined using a novel higher-

order shear deformation theory is developed to examine the static bending 

with two different type porosity distribution of porous for advanced 

composite plates such as functionally graded plates. In this present theory, 

the number of unknowns and governing equations is reduced, takes into 

account the thickness stretching effect into transverse displacement, bending 

and shear, using a new shape function. The used plate theory approach 

satisfies the zero traction boundary conditions on the surfaces of the plate 

without using shear correction factor and the transverse shear strain and 

shear stress have a parabolic distribution across the thickness of the plates. 

The virtual work principle is used to obtain the equilibrium equations. An 

analytical approach based on the Navier solution is employed to obtain the 

solution for static bending of simply supported FGM plates. The proposed 

theory shows a good agreement for static bending of FGM plates with other 

literature results has been instituted of advanced composite plates. 

Numerical results are presented to show the effect of the material 

distribution, the power-law FG plates, the geometrical parameters and the 

porosity on the deflections and stresses of FG plates. 

Keywords: Higher-order shear deformation theory; FG plate; P-FGM; E-FGM; Bending; Porosity; The 

virtual work principle; Navier solution. 

1. Introduction 

Recent attention has been paid to a new category of composite materials called materials (FGM). 

Following the lightest advantageous features with high strength/weight and rigidity/weight ratios 
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have been used successfully in the aeronautical industry, civil engineering, nuclear engineering 

and other engineering applications and to be used in high temperature condition, contrary with 

traditional composite material. In general, FGM is created from a mixture of metal and ceramic. 

Many researchers have devoted their time to understanding the mechanical behaviour and 

mechanism of FGMs to provide an optimum profile for designers, where they have been 

captivated to investigate the bending behaviors, buckling, free vibration and dynamic and 

behaviors of FGM beams, plates, and shells. 

Therefore, because of the exotic properties of FGM, many researchers were captivated of 

bending behaviours for different solicitations, static, free vibrations and buckling behaviors of 

FGM beams, plates, and shells [1, 2]. According to the literature, FGM plate analysis can 

be studied using various theories such as classical plate theory (CPT) [3, 4], the first-order shear 

deformation theory (FSDT) [5, 6], higher-order shear deformation theory (HSDT) [28-35], the 

quasi-3D theory and Carrera unified formulation (CUF) [7, 8]. To determine the spatial variation 

of material properties in functionally graduated materials and structures, mathematical laws such 

as exponential law [9], sigmoid law [10] and power law [11] are used. 

According to the literature, some work using a refined shear deformation plate theory RSDT to 

determine the behaviour of plates in FGM has been published. Merazi et al. [12] studied of the 

neutral surface position for static analysis of FGM plate using a trigonometric RSDT shear 

deformation plate theory. Reddy and Reddy [13] used a RSDT by dividing the transverse 

deflection into bending and shear components to see their contributions to the total transverse 

displacement. Benachour et al. [14] investigated a four variable refined plate theory for free 

vibrations of functionally graded plates with arbitrary gradient. Do et al. [15] examined the 

deflection, in-plane normal, and shear stresses of sinusoidally loaded FGM rectangular plates 

with four simply supported edges. Moreover, many articles are published concerning the analysis 

of FGM structures based on RSDT which involves only four unknown functions for flexion 

response, buckling response, thermo-mechanical bending and free vibration of simply supported 

FGM sandwich plate [16-21].  

In the open literature, some studies about the effect of porosity in the FGM structures have been 

published. Merdaci et al. [22] studied the bending behaviour of FG plates with porosities that 

allow the plate to be perfectly porous and homogenous or to have a form of perfect homogeneity 

shape depending over the values of the density fraction of voids (porosity) or graded factors. 

Sidda Reddya et al. [13] established the influence of thickness stretching needs to be considered 

to analyze the bending behavior of FG porous plates, using a novel higher order Quasi-3D theory 

to the bending response of FGPs with different forms of porosities considering the transverse 

extensibility along the thickness direction. Khorshidvand et al. [23] studied static bending and 

mechanical buckling analyses of FGP plates based on a refined plate theory and the set of the 

governing equations are derived using minimum potential energy. Rad et al. [24] presented the 

static response of porous and multidirectional heterogenous structures based on developed 

gradient elastic foundations. Additional researchers are restricted their attention to vibration and 

buckling [25-29] or the buckling [1, 30-32] of many porous structures. Al-Furjan et al. [41] examined 

how waves move through a unique micro-sandwich beam with three distinct layers: an auxetic 

honeycomb core, a piezoelectric top layer, and a bottom layer that gradually changes its 

properties in two directions. The study analyzed how several factors, including material 

properties, geometric features, and specific characteristics of the bottom layer, influence the 

wave behavior. The findings indicated that a modified theory significantly increases the 

predicted wave speed compared to the traditional approach. Additionally, larger elements in the 

auxetic honeycomb core lead to faster wave propagation. Al-Furjan et al. [42] explored how 

https://www-sciencedirect-com.sndl1.arn.dz/science/article/pii/S2452321620304194
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waves move through the wings of tiny flying machines (micro air vehicles) using a novel 

approach based on mathematical modeling. The study introduces a new design concept that 

utilizes special materials in the wings to improve their rigidity and control how waves propagate 

within them. Various factors affecting wave behavior, like the size of the MAV, specific 

materials used, and the presence of a magnetic field have been considered. Advanced 

mathematical techniques have been used to analyze and predict important wave characteristics in 

these unique wings. The results showed that applying a magnetic field significantly increases the 

wave speed within the wings. 

The objective of this article is to present the bending behavior of FG plates having porosities. 

The plate may be either perfectly porous homogeneous or has a perfect homogeneity shape 

depending on the values of the volume fraction of voids (porosity) or of the graded factors. The 

plate is assumed isotropic at any point within the plate, with its Young’s modulus varying across 

its thickness in accord with a power law in terms of the volume fractions of the plate constituents 

while the Poisson’s ratio remains constant. The present theory satisfies equilibrium conditions at 

the plate’s top and bottom faces without using shear correction factors. A Navier solution is used 

to obtain closed-form solutions for simply supported FG plates. Several important aspects, i.e. 

aspect ratios, thickness ratios, exponent graded factor as well as porosity volume fraction, which 

affect deflections and stresses, are investigated. 

2. Material Properties of FGM Plates with different porosity distributions 

Material composition is varying along z direction with the FG index k. The mechanical properties of the FG plate 

such as Young’s modulus ‘E’, Poisson’s ratio ‘υ’, shear modulus ‘G’ change as the material composition change. In 

this study, FGM plates with the power-law function (P-FGM) and exponential function (E-FGM) as shown in Figure 

1 were considered. 

For a P-FGM plate, the volume of ceramic is obtained using the following formula: 

1
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2

k
z

V z
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                                                                                                                                             (1) 

in which k is the power-law index and h is the thickness of the plate. The material properties of a P-FGM can be 

determined as: 
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The material properties of E-FGM can be determined as: 
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The porosity is considered to be of two different types: even (type-I) and uneven (type-II) distribution of pores. 

The porosity volume fraction, which defines the density of the pores, is β (β<< 1). The modified rule of mixture for 

even (type-I) and uneven (type-II) is proposed as Shafiei et al. [13], Simsek. [14], Wattanasakulpong, and 

Chaikittiratana. [15]. For even porosity (type-I): 

2 1 2 1 2( ) ( ) ( )
2
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= + − − +
                                                                                                                     (4) 

For uneven (type-II): 
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Where P is the effective material property. P1 and P2 are the properties of the upper and lower faces of plate 

respectively. 

Variation du module de Young dans des plaques (E-
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Variation du module de Young dans une plaque 
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Fig 1: Young’s modulus variation for different power laws 

3. Kinematics 
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The FGM plate studied is of uniform thickness, length (a), width (b) and thickness (h). The upper and lower 

surfaces of the plate are at z =h/2 and z=-h/2, and the edges of the plate are parallel to the x and y axes. 

 
Fig 2 : Geometry and coordinates of the FG porous plate. 

A quasi-3D refined HSDT assumptions are used and simplified to reduce the number of unknown variables. The 

current displacement fields takes into account the thickness stretching effect into transverse displacement, can be 

written as follows: 

0

0

( , , ) ( , ) ( )

( , , ) ( , ) ( )  

( , , ) ( , ) ( ) ( , ) 

b s

b s

b s

w w
u x y z u x y z f z

x x

w w
v x y z v x y z f z

y y

w x y z w x y g z w x y

 
= − +

 

 
= − +

 

= +

                                                                                                       (6) 

In the present study, the new shape function 𝑓(𝑧) is proposed as follows: 
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Where u0(x,y), v0(x,y), wb(x,y) and ws(x,y) are the four unknown displacement functions of the middle surface of 

the plate. The kinematic relations can be obtained as follows: 
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4. Constitutive relations 

For elastic and isotropic FGMs, the constitutive relationships can be expressed as follows: 
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Where (σx , σy , σz , τxy , τyz , τxz ) and (εx , εy , εz , γxy , γyz , γxz ) are the components of the stress set deformations, 

respectively. The coefficients (Cij) are given by: 
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5. Equilibrium equations 

Considering the static version of the principle of virtual work, the variation of strain energy of the plate is 

calculated by: 
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                        (12) 

Where A is the surface in the top surface; q is the distributed transverse load. 

Substituting Eqs. (8) and (10) into Eq. (12) and integrating through the thickness of the plate, we can obtain: 
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The stress resultants N, M, Q, and S are defined by: 
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The governing equations of equilibrium can be derived from eq. (13) by integrating the displacement gradients by 

parts and setting the coefficients where 0 0, , ,b su v w w    zero. Thus, one can obtain the equilibrium equations 

associated with the present shear deformation theory. 
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The resulting constraints M, N, S, and Q can be written in matrix form as follows: 
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Where the coefficients are determined by:  
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The governing equations of the theory used can be expressed in terms of displacements as follows:   
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6. Solution approach 

The boundary conditions along the edges of the simply supported plate can be obtained as: 
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Using Navier's solution, solutions that meet the above boundary conditions can be written in the following form: 
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Where q0 is constant, α = π/a, β = π/b. 
By substituting Eqs. (25) into Eqs. (24), the following equation are obtained: 
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7. Numerical results and discussion 

In the present section, the effect of micromechanical models on bending analysis of FG plates using a new quasi-

3D shear deformation theory is presented for investigation. In order to verify the accuracy of the present analysis, 

the results of this study were verified by comparing them with the various existing plate theories. The material 

properties used in the present study are: 

• Ceramic (Pc: Alumina, Al2O3): Ec=380 GPa; υc=0.3. 

• Metal     (Pm: Aluminum, Al) :  Em =70 GPa; υm=0.3. 

The various non-dimensional parameters used in the present analysis are given below: 
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Numerical results for the power-law FG plates k are presented in tables 1-2 using the present theory were 

compared with those of the classical plate theory [1] given by Timoshenko, the Navier-type three-dimensionally (3-

D) exact solution given by Werner [33], the generalized shear deformation theory by Zenkour [20], and refined 

HSDT theory by Nguyen [34]. The present solution is appreciated for a quadratic plate, with the following fixed 

data: a = 1, b = 1, E = 1, q0 = 1, ν = 0.3 and three cases for the plate thickness: h = 0.01, h = 0.03, and h = 0.1. 
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It can be seen that is an excellent agreement between the obtained results in this paper and those reported in [1, 

20, 34]. It can be observed that in the mid-plane for the case of the isotropic plate the axial stress equaled zero. 

Therefore, the neutral surface was identical to mid-plane for the isotropic plate. 

Table 1: Comparison of center deflections of the isotropic homogeneous plates. 

h Classical [1] 3-D [1] SSDT [20] Nguyen et al [1] Present 

0.01 44360.9 44384.7 44383.84 44385.41 44379.49 

0.03 1643.00 1650.94 1650.646 1651.169 1649.247 

0.1 44.3609 46.7443 46.65481 46.81271 46.29049 

Table 2 : Comparison of distribution of stress across the depth of isotropic homogeneous plates. 

h z/h 
xx  xy  

3-D [1] SSDT [20] 
Nguyen et al 

[1] 
Present 3-D [1] SSDT [20] 

Nguyen et 

al [1] 
Present 

0.01 

0.5 2873.3 2873.39 2873.51 2873.74 1949.6 1949.36 1948.61 1947.86 

0.4 2298.6 2298.57 2298.86 2298.78 1559.2 1559.04 1558.85 1556.68 

0.3 1723.9 1723.84 1724.22 1725.70 1169.1 1168.99 1169.09 1168.26 

0.2 1149.2 1149.18 1149.58 1149.26 779.3 779.18 779.33 778.35 

0.1 574.6 574.58 574.93 574.61 389.6 389.55 389.56 389.13 

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.03 

0.5 319.40 319.445 319.279 319.825 217.11 217.156 216.512 216.046 

0.4 255.41 255.415 255.429 255.658 173.26 173.282 173.205 172.378 

0.3 191.49 191.472 191.580 191.817 129.75 129.682 129.897 129.129 

0.2 127.63 127.603 127.731 127.693 86.41 86.313 86.592 85.852 

0.1 63.80 63.788 63.881 63.830 43.18 43.112 43.285 42.946 

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.1 

0.5 28.890 28.9307 28.7351 29.2565 19.920 20.0476 19.4861 19.5282 

0.4 22.998 23.0055 22.9887 23.2120 15.606 15.6459 15.5885 15.2717 

0.3 17.182 17.1660 17.2422 17.3135 11.558 11.4859 11.6909 11.2408 

0.2 11.423 11.3994 11.4958 11.4769 7.642 7.5315 7.7933 7.4055 

0.1 5.702 5.6858 5.7493 5.7223 3.803 3.7265 3.8957 3.6631 

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Materials properties are defined by using the power-law distribution. The results obtained are compared with 

those obtained by Zenkour [9] using the sinusoidal shear deformation plate theory SSDT and the higher order shear 

deformation plate theory using by Nguyen [35] with different value of power law index k and aspect ratio a/h = 10. 

From tables 3 and 4, it can be seen that is an excellent agreement between the obtained results in this paper and 

those reported in [9, 35].  

Table 3 : Non-dimensional displacements and stress of an FGM square plate under uniform load (a/h = 10).  

k Theory w  xx  yy  yz  
xz  yz  

0 

Present 0.46288 2.9254 1.9253 0.48704 0.54794 1.2563 

SSDT [20] 0.4665 2.8932 1.9103 0.4429 0.5114 1.2850 

Nguyen et al [35] 0.4681 2.8732 1.9155 0.4665 0.5386 1.2993 

1 

Present 0.89688 4.4879 2.1292 0.5990 0.5481 1.0167 

SSDT [20] 0.9287 4.4745 2.1692 0.5446 0.5114 1.1143 

Nguyen et al [35] 0.9262 4.4408 2.1768 0.5010 0.4705 1.1221 

2 

Present 1.1391 5.2170 1.9677 0.56342 0.44998 0.89686 

SSDT [20] 1.1940 5.2296 2.0338 0.5734 0.4700 0.9907 

Nguyen et al [35] 1.1863 5.1853 2.0442 0.4757 0.3899 1.0000 
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5 

Present 1.3733 6.0480 1.5353 0.40911 0.33095 0.96196 

SSDT [20] 1.4356 6.1504 1.6104 0.5031 0.4177 1.0451 

Nguyen et al [35] 1.4211 6.0858 1.6253 0.4014 0.3333 1.0593 

10 

Present 1.5402 7.2262 1.2323 0.34027 0.35724 1.0053 

SSDT [20] 1.5876 7.3689 1.2820 0.4227 0.4552 1.0694 

Nguyen et al [35] 1.5841 7.2965 1.2954 0.3900 0.4200 1.0855 

∞ 

Present 2.5131 2.9254 1.9255 0.48710 0.54819 1.2578 

SSDT [20] 2.5327 2.8932 1.9103 0.4429 0.5114 1.2850 

Nguyen et al [35] 2.5413 2.8732 1.9155 0.4665 0.5386 1.2993 

Table 4 : Non-dimensional displacements and stress of an FGM square plate under sinusoidal load (a/h = 10). 

k Theory w  xx  yy  yz  
xz  yz  

0 

Present 0.2935 2.0211 1.3240 0.2428 0.2731 0.6932 

SSDT [20] 0.2960 1.9955 1.3121 0.2132 0.2462 0.7065 

Nguyen et al [35] 0.2971 1.9758 1.3172 0.2205 0.2546 0.7092 

1 

Present 0.5684 3.1022 1.4648 0.2985 0.2731 0.5618 

SSDT [20] 0.5889 3.0870 1.4894 0.2622 0.2462 0.6110 

Nguyen et al [35] 0.5872 3.0537 1.4969 0.2369 0.2224 0.6125 

2 

Present 0.7223 3.6031 1.3507 0.2757 0.2202 0.4943 

SSDT [20] 0.7573 3.6094 1.3954 0.2763 0.2265 0.5441 

Nguyen et al [35] 0.7520 3.5657 1.4057 0.2249 0.1843 0.5459 

5 

Present 0.8721 4.1765 1.0510 0.1940 0.1569 0.5291 

SSDT [20] 0.9118 4.2488 1.1029 0.2429 0.2017 0.5755 

Nguyen et al [35] 0.9018 4.1849 1.1176 0.1898 0.1576 0.5783 

10 

Present 0.9785 4.9911 0.8429 0.1610 0.1689 0.5537 

SSDT [20] 1.0089 5.0890 0.8775 0.2041 0.2198 0.5894 

Nguyen et al [35] 1.0065 5.0175 0.8908 0.1844 0.1986 0.5926 

∞ 

Present 1.5938 2.0210 1.3240 0.2428 0.2731 0.6933 

SSDT [20] 1.6070 1.9955 1.3172 0.2132 0.2462 0.7065 

Nguyen et al [35] 1.6129 1.9758 1.3121 0.2205 0.2546 0.7092 

Table 5 displays the effects of geometrical ratio a/b on the dimensionless centre deflection of exponential model 

FGM rectangular plates with various power law index k for different value of the aspect ratio a/h. The acquired are 

compared with those of the 3D elasticity solution [36], quasi-3D theories [36, 37].  

The correctness of the results is shown by the comparison of the results with the results for medium thick plates. 

It is observed that the deflections obtained of the proposed theory were a little larger than those of literature results 

for the very thick FGM plates (a/h = 2), because the effect of stretching did not take for the present theory. 

Table 5 : Dimensionless center deflection ( w ) of exponential model FGM rectangular plates. 

a/h b/a Theory 
k 

0.1 0.3 0.5 0.7 1 1.5 

2 

1 

3D [36] 0.5769 0.5247 0.4766 0.4324 0.3727 0.2890 

Quasi-3D [36] 0.5731 0.5181 0.4679 0.4222 0.3612 0.2771 

Quasi-3D [37] 0.5776 0.5222 0.4716 0.4255 0.3640 0.2792 

Present 0.5524 0.5420 0.4890 0.4411 0.3767 0.2879 

2 

3D [36] 1.1944 1.0859 0.9864 0.8952 0.7727 0.6017 

Quasi-3D [36] 1.1880 1.0740 0.9701 0.8755 0.7494 0.5758 

Quasi-3D [37] 1.1938 1.0790 0.9748 0.8797 0.7530 0.5785 
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Present 1.1665 1.0993 0.9927 0.8955 0.7658 0.5872 

3 

3D [36] 1.4430 1.3116 1.1913 1.0812 0.9334 0.7275 

Quasi-3D [36] 1.4354 1.2977 1.1722 1.0580 0.9057 0.6962 

Quasi-3D [37] 1.4419 1.3035 1.1774 1.0626 0.9096 0.6991 

Present 1.4147 1.3234 1.1952 1.0783 0.92250 0.7078 

4 

1 

3D [36] 0.3490 0.3168 0.2875 0.2608 0.2253 0.1805 

Quasi-3D [36] 0.3475 0.3142 0.2839 0.2563 0.2196 0.1692 

Quasi-3D [37] 0.3486 0.3152 0.2848 0.2571 0.2203 0.1697 

Present 0.3456 0.3159 0.2854 0.2577 0.2209 0.1702 

2 

3D [36] 0.8153 0.7395 0.6708 0.6085 0.5257 0.4120 

Quasi-3D [36] 0.8120 0.7343 0.6635 0.5992 0.5136 0.3962 

Quasi-3D [37] 0.8145 0.7365 0.6655 0.6009 0.5151 0.3973 

Present 0.8098 0.73578 0.66500 0.6007 0.5151 0.3976 

3 

3D [36] 1.0134 0.9190 0.8335 0.7561 0.6533 0.5121 

Quasi-3D [36] 1.0094 0.9127 0.8248 0.7449 0.6385 0.4927 

Quasi-3D [37] 1.0124 0.9155 0.8272 0.7470 0.6404 0.4941 

Present 1.0071 0.9142 0.8263 0.7464 0.6402 0.4943 

Table 6 demonstrates comparison of dimensionless stress (
xx ) of exponential model FGM square plates with 

exponential material law for various values of a/h. The results of present theory are compared with the Arani and 

Zamani [38], the quasi-3D solutions of Mantari and Soares [39], and quasi-3D sinusoidal solution of Thai and Kim 

[40]. The numerical results indicate good agreement with corresponding literatures. 

Table 6 : Dimensionless stress ( xx ) of exponential model FGM square plates. 

a/h Theory 
k 

0.7 1 1.5 

2 

HSDT [9] ( 0z = ) 0.3123 0.3477 0.4035 

Arani and Zamani [38] ( 0z  ) 0.3572 0.4045 0.4830 

Quasi-3D [40] ( 0z  ) 0.3675 0.4085 0.4851 

Present ( 0z  ) 0.3232 0.3574 0.4220 

4 

HSDT [9] ( 0z = ) 0.2649 0.2927 0.3451 

Arani and Zamani [38] ( 0z  ) 0.2822 0.3252 0.3722 

Quasi-3D [40] ( 0z  ) 0.2870 0.3171 0.3739 

Present ( 0z  ) 0.2712 0.2987 0.3506 

10 

HSDT [9] ( 0z = ) 0.2515 0.2774 0.3264 

Arani and Zamani [38] ( 0z  ) 0.2636 0.2902 0.3451 

Quasi-3D [40] ( 0z  ) 0.2671 0.2944 0.3460 

Present ( 0z  ) 0.2529 0.2781 0.3267 
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Fig 3 : Variation of the non-dimensional center deflection according to the parameter’s a/h, b/a, x, beta in the case of porous P-FGM 

plates. 
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Fig 4 : Variation of the non-dimensional centre deflection according to the parameter’s a/h, b/a, x, beta in the case of E-FGM plates. 
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Fig 5 : Variation of the non-dimensional axial stress according to the parameter’s a/h, b/a, x, beta in the case of P-FGM plates. 
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Fig 6 : Variation of the non-dimensional center axial stress according to the parameter’s a/h, b/a, x, beta in the case of E-FGM plates. 
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Fig 7 : Variation of the non-dimensional shear stress according to the parameter’s a/h, b/a, x, beta in the case of P-FGM plates. 
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Fig 8 : Variation of the non-dimensional shear stress according to the parameter’s a/h, b/a, x, beta in the case of S-FGM plates. 

A comparison study of the center deflection and stress σxx are reported in figures 3-6 for P-FGM and E-FGM FG 

plates with various porous models. Figures 3a-6a indicate the effect of the side-to-thickness ratio a/h and the 

porosity models on the center deflections w (Figs. 3a-4a) and the dimensionless stress σxx (Figs. 5a-6a) of FG 

square plates with volume fraction 𝑘=1 and porosity coefficient β is chosen as 0.1 and 0.2. It is noted that the 

difference between perfect and imperfect porous models of P-FGM and E-FGM plates witch the center deflections 

w and the dimensionless stress σxx decreases with increasing of side-to-thickness ratio this is because of the 

porosity coefficient's effect on the plate's stiffness. 



534 Slimani et al. 

. It's seen in Figures 3b-6b the effect the aspect ratio b/a and the porosity models on the center deflections w 

(Figs. 3b-6b) and the dimensionless stress σxx (Figs. 5b-6b) of FG plates with volume fraction 𝑘=1, the side-to-

thickness ratio a/h=10 and porosity coefficient β is chosen as 0.1 and 0,2. It is observed for both models of P-FGM 

and E-FGM plates that for perfect and imperfect porous, the deflection and stress increase rapidly with increasing of 

aspect ratio. It is clear that the central deflections w and the dimensionless stress σxx for FG plate with even 

porosity distribution model (β=0.2) are higher than for the other distribution models of P-FGM and E-FGM plates, 

because even porosity implies a uniform distribution of pores throughout the plate. This creates a more 

homogeneous material structure, meaning the material behaves similarly across different regions. This homogeneity 

leads to more efficient load transfer and reduced stress concentrations, resulting in higher stiffness and resistance to 

deformation.  

Figures 3c and 4c demonstrate the center deflections w of P-FGM and E-FGM plates plots, using perfect and 
imperfect porous models. It can be seen that the center deflections w has maximum values at the center of the plate 

(x = a/2) significant differences between the results obtained by the porosity distribution models, where the even 

porosity distribution model (β=0.2) is higher than that for the other models. 

Variation of porosity coefficient on the central deflection and stress for different volume fraction k of P-FGM and 

E-FGM plate are illustrated in figures 3d and 5d, respectively. The porosity coefficient β has an important effect on 

the deflections and stress mainly for all distribution models where the increasing of porosity coefficient increases the 

central deflections w and the stress σxx. Also, it is found that for figures 4d and 6d, where the central deflection and 

stress have important values for even porosity distribution model than uneven porosity distribution model of E-FGM 

plate, due to an increased porosity coefficient in an FG plate compromises its stiffness and increases stress 

concentration, leading to larger central deflections and higher overall stress under load. 

The curves presented in figures 5c and 6c indicate the evolution of the normal stress σxx as a function of the z/h 

ratio and the porosity distribution for P-FGM and E-FGM plates. These curves indicate that the effect of the porosity 

parameter on normal stress σxx behaviour is the same as that observed for deflection, that is to say that the rise of 

the porosity parameter β leads to an increase of the normal stress σxx and this for the two types of FGM. The 

highest positive normal stress σxx value is obtained for non-uniform porosity distribution with β =0.1, whereas the 

smallest is obtained for non-uniform porosity repartition with β =0.2. The other values of normal stress σxx for the 

different cases are in this interval. It should also be noted that the values obtained in the case of P-FGM plates are 

inferior by a value almost equal to 50% of those obtained in the case of E-FGM, because the steeper stiffness 

gradient in E-FGM leads to a more efficient distribution of material properties compared to P-FGM under various 

loading conditions (bending, deflection, etc.). 

Figures 7a-7b and 8a-8b show the transverse shear stresses τxz shape according to the variation of thickness ratio 

z/h and aspect ratio a/h. It's obvious that both of functionally graded porous and nonporous plates have the same 

behaviour. The shear stresses τxz maximum value given by the figures 7a-7b and 8a-8b are those obtained by the 

perfect functionally graded plate and the lowest by the uneven porosity distribution with β =0.2. However, it was 

also noted that the stresses obtained by the even distribution of the porosity are greater than those obtained by the 

uneven distribution, it means that, the uneven porosity distribution creates variations in material density across the 

plate's thickness. This can affect the stress distribution and potentially lead to higher shear stresses in specific 

regions compared to even porosity. The transverse shear stresses are affected by the variation of a/h ratio, the 

increase of this ratio has the effect of increasing the value of the stress, nevertheless this value has tendency to 

stabilize from a ratio a/h =30. 

After reviewing the various results and interpretation of the different curves of the deflection, normal and shear 

stresses given established during this analysis, it can be concluded that the plates with the model P-FGM and E-

FGM present the same behaviour and this even after introduction of the porosity effect. Nevertheless, the values of 

deflection, normal and shear stresses reached for E-FGM plates are greater than those of P-FGM plates. 

8. Conclusions 

This investigation explores the influence of porosity model distribution on the behavior of 

functionally graded plates using an innovative quasi-3D refined higher-order shear deformation 

theory. Unlike other quasi-3D theories with five or more unknowns, this work employs a 

displacement field limited to four unknowns. Additionally, it reduces the number of equilibrium 

equations, seamlessly integrating thickness-stretching effects into transverse displacement, 

bending, and shear. The study includes a comparison between two functionally graded material 
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models, namely P-FGM and E-FGM. The governing equations are derived from the static 

version of the principle of virtual work, and analytical solutions for simply supported P-FGM, E-

FGM porous, and perfect plates are obtained. Multiple validation examples are presented and the 

current quasi-30 theory's numerical results accurately predict the bending response different FG 

plates. The same comportment is observed for plates with and without porosity, however an 

increase is observed in the values of deflection, normal and shear stresses in the case where the 

porosity is taken into account. In addition, the results obtained in terms of values of deflection, 

normal and shear stresses are higher in the case of E-FGM compared to P-FGM.[41, 42] 
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