
Journal of Computational Applied Mechanics 2024, 55 (2): 201-208 

DOI:10.22059/JCAMECH.2024.373173.985 

 

          RESEARCH PAPER   

 

Vibration Behaviour of Shear Deformable Laminated Plates 

Composed of Non-Homogeneous Layers 
 

Abdullah Sofiyev a, b, c,*, Tarkan Vergül d, Isa Khalilov e 

a Department of Mathematics, Istanbul Ticaret University, Beyoglu, 34445 Istanbul, Turkey 
b Scientific Research Department of Azerbaijan University of Architecture and Construction, Baku 1073, Azerbaijan 

c Scientific Research Centers for Composition Materials of UNEC Azerbaijan State Economic University, Baku 

1001, Azerbaijan 
d Department of Structural Engineering, Engineering Faculty, Istanbul Ticaret University, 34445 Beyoglu/Istanbul, 

Türkiye 
e Department of Machine Design and Industrial Technologies, Azerbaijan Technical University, H. Javid ave. 25, 

AZ1073, Baku, Azerbaijan 

 

Abstract 

The free vibration behavior of laminated plates consisting of non-

homogenous orthotropic layers is presented. First, the mechanical properties 

of laminated plates composed of non-homogenous (NH) orthotropic layers 

are modelled. After establishing the basic relations of laminated plates 

within shear deformation theory (SDT), governing equations are derived in 

the framework of Donnell type plate theory. The solution of the governing 

equations is carried out by the Galerkin method and the analytical 

expression is found for the linear frequency of plates composed of non-

homogenous orthotropic layers. Finally, the influences of various factors 

such as shear stresses, non-homogeneity, number and arrangement of layers 

on the frequency of rectangular plates are examined. 
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1. Main text 

With the increasing use of laminated composite plates in various engineering structures, their vibration behaviors 

are attracting more attention from researchers. The fact that the transverse shear modules of composite laminates are 

lower than the in-plane modules make the effect of transverse shear deformations more important as the plate 

thickness increases. Since classical plate theory, which neglects transverse shear deformation effects, can only 

predict the response of thin isotropic plates with reasonable accuracy, more improved theories need to be used for 

moderately-thick and thick plates. The first-order shear deformation theory proposed by Reissner [1] was extended 
to laminated plates by Yang et al. [2]. Some first-order theories have been developed to overcome the lack of a 

constant or uniform transverse shear stress distribution across the plate thickness [3]. Various higher order theories 

leading to parabolic distribution of transverse strain through the thickness have also been developed, and the shear 

correction factor is not used in these theories [4]. 

Although, in the early 2000s, the extensive use of non-homogeneous materials encouraged the development of 

more general and precise theories to provide a better representation of laminated non-homogeneous plate 

kinematics, these studies were limited to the response of homogeneous composite plates. There are few models that 
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describe the structural response of non-homogeneous composite structural elements [5-7]. Some studies have been 

carried out in recent years on the combined effects of shear deformation and non-homogeneity on the frequencies of 

cross-ply laminated orthotropic structural elements [8-15]. 

Literature review indicates that the free vibrations of laminated plates consisting of non-homogeneous 

orthotropic materials within SDT have been studied a lot. The current paper is devoted to the solution of the free 

vibration problems of laminated non-homogeneous composite plates. The shear deformation theory of homogeneous 

laminated plates is extended to the nonhomogeneous ones. A wide variety of numerical results are presented for 

homogeneous and nonhomogeneous cross-ply laminates as per classical and shear deformation theories. The 

influences of the non-homogeneity, aspect ratio, thickness effect, number of layers and material anisotropy on the 

natural frequencies are studied in detail.  

The remaining of present paper is arranged as follows: Section 2 presents the formulation of the problem. In 

Section 3, the governing equations of laminated plates consisting of non-homogeneous orthotropic materials are 
derived within SDT and the natural frequency is obtained using the Galerkin method. In Section 4, the convergence 

and accuracy of the solution are verified, and then the free vibration of laminated plates composed of non-

homogeneous orthotropic materials in SDT is discussed. Finally, Section 5 provides conclusions. 

2. Formulation of the problem 

Consider a laminated rectangular plate of total thickness h , length a , width b  composed of N orthotropic 

inhomogeneous layers. The geometry and coordinate system are shown in Fig. 1. The coordinate system Oxyz is 

such that the mid-plane of the plate coincides with xy  plane, and z  axis is normal to the middle plane.  

 
Fig.1. The geometry and coordinate system of the laminated plate 

 

It is assumed that the layers of laminated plate are perfectly bonded to each other, they do not slip and remain 

elastic during deformation. The displacements in the x , y  and z  directions are indicated by ,u w and w ,  

respectively. Let  ( , , )x y t  be the Airy stress function for the stress resultants, so that [16], 
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where 1,2 =  is the material gradient exponent,  indicate the non-homogeneity parameter for the elasticity 

moduli in the
thk layer of  laminated plates, which characterizes its variation depending on the 1z and  0,1  . The 

symbols with “0” in the superscript indicate the mechanical properties of the homogeneous orthotropic material 

( 0 = ). Since the Poisson ratio (
( )
12

k
 and 

( )
21

k
 ) and density (

( )

0

k ) in the layers vary little according to the 

thickness coordinate, they are considered constant and the following condition is satisfied: 
( ) 0( ) ( ) 0( )

21 11 12 22ν νk k k kE E=  . 

3. Basic equations and solution method 

Within SDT, the basic relations of the layer consisting of non-homogeneous orthotropic materials are expressed 

as follows [9]:   
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where 
( )k 

 
 and 

( ) ( ),k k  
  indicate the stress and strain tensors in the lamina 

thk , respectively, and 
1
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ijzD  are 

coefficients of reduced material stiffness for non-homogeneous orthotropic lamina (
thk ), 
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Using fundamental relations, the equations of motion of laminated plates consisting of non-homogeneous 

orthotropic materials can be expressed based on SDT as follows: 
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where ijL  are differential operators, 1( , , )x y t  and 2 ( , , )x y t  are rotations of the normal to the middle plane 

relative to the  y and x  axes, and 
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Since all edges of the laminated plate are assumed to be simply supported, the solution of basic equations is 

sought as follows [4, 9, 14]: 
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where , ( =1,2,...,4)iC i  are amplitudes,   is the free vibration frequency, /= mπ a  and /= nπ b  are 

the wave parameters in which (m, n) is the vibration mode. 

Substituting (6) into the set of Eqs. (5), the following set of algebraic equations is obtained:  
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where  
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From Eq. (7), we obtain an expression for the frequency of laminated plates consisting of inhomogeneous 

orthotropic materials within SDT: 
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The dimensionless frequency parameter of laminated plates composed of nonhomogeneous orthotropic layers 
within SDT is defined as: 
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Since the expressions (10) give the dimensional and dimensionless frequency values within the framework of 

classical plate theory (CPT) when the transverse shear stresses are eliminated in the basic relations, they are shown 

as CPT  or 1CPT  in the table and graphs. 

4. Results and Discussion 

Three comparisons are made for the accuracy of the obtained formulas. When the calculations in the 

comparisons are made, vibration modes are not included in the tables for cases where the minimum values of the 

frequency parameter are obtained at ( , ) (1,1)m n = . 

Example 1: In this example, the dimensionless frequency parameter of the laminated homogeneous orthotropic 
square plate with (0o/90o/0o)-sequence for CPT and SDT are compared with the results obtained in the study of Ref. 

[17] that used finite element method (See, Table 1). The dimensionless frequency parameter is expressed 

as,
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0
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22

k

k

a
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
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0( )
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seen from Table 1 that the dimensionless frequency parameter obtained in this study are in good agreement with the 

results of Ref. [18] within SDT and CPT. 

The new numerical results are performed for free vibration frequency of single-layer and laminated NH-

orthotropic rectangular plates using Eq. (10). The 0 =  corresponds to homogeneous case and is denoted as H. In 

the numerical analysis, the following layer arrangements were taken into account: The material characteristics are 

taken from the study of Reddy [4]:  
0( ) 11

11 = 2.069 10 Pa,kE  0( ) 10 0( ) 0( ) 9

22 12 13= 2.069 10 Pa, = = 6.9 10  Pa,k k kE G G  0( ) 9
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( ) 3

0 = 1950kg / mkρ  and
( )

12ν = 0.3k
. For subsequent examples use the following characteristics: 

/ 0.5,1.0,1.5,2.0, / 15a b a h= =  and ( , ) (1,1)m n = .  

 

The variations of 1SDT and 1CPT   for the laminated H and NH- orthotropic plates versus /a b  are presented 

in Table 2 and Figs 2-5. As /a b increases, the values of 1SDT  and 1CPT  for single-layer and laminated plates 

increase.  When the /a b ratio increases from 0.5 to 2.0, the effect of the NH-linear profile on the frequency of a 

laminated plate within SDT and CPT can be considered constant, although it changes slightly. While this effect is 
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slightly erratic around (-3.83%) in the SDT framework, it is approximately (-4.3%) in the CPT framework. In 

laminated plates, although the non-homogeneity effect on the frequency reduces continuously as the /a b  

increases, this effect varies depending on the number and arrangement of layers.  

 
Table 1. Comparison of dimensionless frequency parameter of laminated orthotropic square plates with (0o/90o/0o)-

array within SDT and CPT 

Arrangement of layer (0o/90o/0o) 

Frequencies SDT  CPT  

ha /  20 100 

Present study 14.422 15.193 

Ref. [17] 14.004 15.041 

When the /a b  ratio increases from 0.5 to 2.0, the effect of the NH-quadratic profile on the frequency of 

laminated plates in the framework of SDT and CPT is more evident than the linear profile and can be considered 

constant, although it changes slightly. For example, in the SDT frame, the effect of the NH-quadratic profile on the 

frequency is slightly irregular, around +6.6%, while in the CPT frame, that effect is about +7.2%. In laminated 

plates, the non-homogeneity effect on frequency decreases continuously with the increase of the /a b ratio, but this 

effect varies depending on the number and arrangement of layers.  

Within the framework of SDT, when comparing the laminated plate with the single layer plate, the most 

significant effect of the layer arrangement on the frequency occurs with (-74%) in the (90°/0°/90°)-aligned plate, 

while the weakest effect occurs with 6% in the (0o/90°/0°)-array plate. It is seen that the layer arrangement in 

symmetrical arrangements in square plates has little effect on the frequency compared to the single layer. 

When the /a b ratio increases, the effect of shear deformations on the frequency increases significantly in NH-

linear and NH-quadratic plates with all-layer arrangement, and that effect is more evident in the NH-quadratic 

profile. For example, for the NH-linear profile, in (0o), (0o/90°), (0o/90°/0°), (90o/0°/90°), (0o/90°/90°/0°) and 

(90o/0°/0°/90°)-aligned plates, the effects of shear deformations on frequency rise from 1.97% to 8.71%, from 

5.29% to 6.65%, from 1.65% to 24.26%, from 4.76% to 8.8% and from 1.88% to 22.6%, while for the NH-quadratic 

profile, those effects rise from 1.93% to 10.43%, from 6.44% to 7.59%,  from 2.11% to 27.93%, from 5.84% to 

9.72% and from 2.26% to 26.24%, as the /a b ratio increases from 0.5 to 2 (see, Figs.2-5). 

As can be seen from the ratios, when the NH-linear profile is compared with the homogeneous profile, the effect 

of SD on frequency is more evident in the homogeneous profile, while when the NH-quadratic case is compared 
with the homogeneous case, the effect of SD on frequency is more evident in the NH-quadratic profile. 

 

Fig. 2. Variation of the 1SDT  for (0o) single-layer and (0o/90o) and (0o/90o/0o)-array  laminated plates with H and 

NH-linear and quadratic profiled layers versus the /a b  
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Table 2. Variation of the 
1SDT  and 

1CPT   for laminated plates with H and NH-linear and quadratic profiled layers 

versus the /a b  

 NH-linear profile 

/a b 

(0o) (0o/90°) (0o/90°/0°) 

CPT SDT CPT SDT CPT SDT 

H NH H NH H NH H NH H NH H NH 

0.5 1.306 1.250 1.227 1.180 0.731 0.711 0.718 0.697 1.286 1.211 1.211 1.147 

1 1.445 1.384 1.360 1.308 1.070 1.044 1.039 1.016 1.445 1.370 1.363 1.299 

1.5 1.771 1.695 1.668 1.604 1.807 1.771 1.703 1.679 1.831 1.755 1.725 1.661 

2 2.334 2.235 2.187 2.103 2.926 2.872 2.640 2.622 2.501 2.423 2.325 2.262 

 

/a b 
NH-quadratic profile 

0.5 1.306 1.400 1.227 1.308 0.731 0.778 0.718 0.763 1.286 1.382 1.211 1.293 

1 1.445 1.550 1.360 1.450 1.070 1.140 1.039 1.104 1.445 1.550 1.363 1.454 

1.5 1.771 1.899 1.668 1.779 1.807 1.925 1.703 1.805 1.831 1.957 1.725 1.832 

2 2.334 2.503 2.187 2.330 2.926 3.115 2.640 2.790 2.501 2.662 2.325 2.460 

/a b
 

NH-linear profile NH-quadratic profile 

/ 15,a h =  ( , ) (1,1)m n =  

(90°/0°/90°) 

CPT SDT CPT SDT 

0.5 0.625 0.605 0.613 0.595 0.625 0.665 0.613 0.651 

1 1.445 1.370 1.323 1.264 1.445 1.550 1.323 1.406 

1.5 2.972 2.802 2.457 2.352 2.972 3.191 2.457 2.594 

2 5.146 4.846 3.798 3.656 5.146 5.528 3.798 3.984 

 

 

Fig. 3. Variation of the 1CPT  for (0o) single-layer and (0o/90o) and (0o/90o/0o)-array laminated plates with H and NH-

linear and quadratic profiled layers versus the /a b  
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Fig. 4. Variation of the 1SDT  for (90o/0o/90o) single-layer and (0o/90o/90o/0o) and (90o/0o /0o/90o)-array plates with H 

and NH-linear and quadratic profiled layers versus the /a b  

 

Fig. 5. Variation of the 1CPT  for (90o/0o/90o) single-layer and (0o/90o/90o/0o) and (90o/0o /0o/90o)-array plates with H 

and NH-linear and quadratic profiled layers versus the /a b  

5. Conclusions 

The free vibration behavior of laminated plates consisting of non-homogeneous orthotropic layers is presented 

within the framework of shear deformation theory. After the basic relationships of laminated plates are established 

according to the generalized Hooke's rule, the basic equations are derived within the framework of Donnell-type 

plate theory. The solution of the governing equations is carried out by the Galerkin method and the analytical 

expression for the linear frequency of plates consisting of non-homogeneous orthotropic layers is found. Finally, the 
effects of various factors such as shear stresses, inhomogeneity, number and arrangement of layers on the free 
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vibration frequency of rectangular plates are examined.  
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