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Abstract

The present paper introduces an efficienthigh er theory to analyze the
stability behavior of porous functional ded”sandwich plates (FGSPs)
resting on various boundary cohdi . Th sandwich plate comprises
two porous FG layers, face sheets, a ceramic core. The material
properties in the FGM layers are assumed to change across the thickness

direction according to the -law distribution. To satisfy the requirement
of transverse shear, stress nishing at the top and bottom surfaces of the
FGSP, a trigono ic s rmation theory containing four variables

in the displacement with indeterminate integral terms is used, and the
principle of vir wor applied to describe the governing equation than
it solved by Navier )solution method for simply supported boundaries.
an al solution for FGSPs under different boundary
btained by employing a new shape function, and numerical
nted. Furthermore, validation results show an excellent
een the proposed theory and those given in the literature. In
influence of several geometric and mechanical parameters, such
r-law index, side-to-thickness, aspect ratio, porosity distribution,

boundary conditions, loading type, and different scheme

figurations on the critical buckling, is demonstrated in the details used in
parametric study.
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1. Introduction

Developing composite materials has achieved high levels of resistance, durability, and lightweight. According to
the critical elastic deformation at the interfaces, the main drawback of conventional laminates is the concentration of
stress between the layers and the propagation of cracks. Functionally graded materials are a new class of composite
materials with specific characteristics that eliminate the weakness and the concertation stress in the traditional
composite, specifically under high thermal loads. FGM presents continuous materials between two different
constituents, ceramic and metal, to combine two essential properties, ceramic with thermal resistance and metal to
resist under mechanical strength [1-3]. FGMs are an interesting material for different fields, including mal and

mechanical systems such as fiber-reinforced polymer in civil engineering to reinforce the concert, y in
bridges because the FRP materials increase corrosion resistance, aerospace applications to provi high thermal
barrier coating, spacecraft structures, diesel, and turbine machine, as well as the FGM has a signifi rofe in the
development of medical industries especially dental area [4, 5].

Sandwich structures are another important model designed in three layers, two face sh € and bottom

combined core layer; in most cases, the face and the core material are different, so_the/interface problem is so
significant here. Hence, the key to minimizing the concentration stress is to use a s t between the two
layers; the FGMs are considered in sandwich manufacturing [6].

As FGMs become more interesting materials, different plate and be ies h preference to study the
FGM structures response; the theory in the plate can be regarded as n of the beam theory; on the other
hand, the Euler-Bernoulli and Timoshenko beam theories both have its cou art in Classical Love-Kirchhof plate

even after undergoing bending. While it is less accurate and ne
stresses, it yields precise results only for thin plates [7-9]/The

ay more attention to the effect of transverse
eory in the hierarchy of refined theories is

satisfy the stress-free boundary conditions on the surface e plate and requires an arbitrary shear correction
factor [10-13]. Furthermore, the limitation of CPT and FSDT led to the development of HSDT; the HSDT used
polynomial shape functions or nonpolynomial functions to avoid the use of correction factor in FSDT and to
develop a hypothesis more realistic from the of Iove-Kirchhoff. The HSDT introduces additional variables that
are often difficult to interpret in phy ter

So far, the studies on the Analysis 0 structures (beam, plate, and shell) have received too much attention
from existing literature. Various theagigs ha en developed to provide more helpful analysis methods with lower
computational costs. Furthermorefsome studies have been carried out on the Bending analysis of FG structures [15-
18], thermal and mechani€l buc 4], and free and forced vibration behavior under impact loading[25-32]

Research on functionall de dwich structures and their mechanical behavior has been ongoing for many
years. FGMs have shom ntial in eliminating stress concentration problems in sandwich structures, and

various plate theorie beer used to study their behavior. With continued research, it is expected that the
applicati functionally graded sandwich structures will continue to grow.
nts an efficient higher-order theory for the buckling analysis of porous FGSPs with varied

development and
This article pfe

the findings. The findings of this study can be used in designing lightweight and high-strength structures using FG
sandwich plates. Numerical results are presented to validate the theory's accuracy by comparing it with other
studies, and a parametric analytic study shows the influence of various parameters on the FGSP's critical buckling
load, which are illustrated in detail.

2. Structure

Consider a FGSP composed of three layers, as shown in (Figure 1). The X, y, and z coordinates are taken
according to the length, width, and thickness, respectively. The intermediate layer is homogeneous and consists of a
purely ceramic material.
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Figure 1. Geometry and coordinates of FG sandwich plates. @

The material properties vary smoothly and continuously across the thic th and obey the following
power-law distribution defined by[33]:

€
PY@)=P, +(R. P, V()
With the consideration of the porosity effect[34]:
POD=P, +® PV @~ SR +P, (02
Where P represents the effective material property such 4s E, v, p; subscripts ¢ and m denote the ceramic and
metal phases, respectively; { denotes the por ogfficient (€ <1), and V is the volume fraction of layer defined
by[3s, 36]:

VO(@z)=

VO ()= ®)

transverse Shear stresses vanishing at the (face sheets) top and bottom surfaces of the FGSP without including shear
correction factors is of the form[29]:

oW,
u(x,y,z) =Uy(X,y) - 28_)(0+ k, f (2)] 6ax

V(X Y, 2) =Vo (X, y) - z% +k,f (2) odly @)
W(X! y! Z) = WO (X’ y)
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Where u,,v,,w, and & represent the unknown displacements of the mid-plane and rotations of normal to mid-plane

of the FGSP. ki and k. are the constants depending on the geometry. The undetermined integrals presented in the
previous equations are solved by using Navier’s type solution and can be declared as:

_ W a0
u(x,y,z) =uy(x,y)—z ax +k Af(2) x
ow, 06 5)
V(X,Y,2) = Vo (%, V) 2 50 4k, B f (2) &2 (
° o oy
W(X,Y,Z) =W, (X,Y)
And
1 1
kl=/12, k2=ﬂ2, A=—F, B=—? (6&)
Where: @
gz, e (6b)

In the present study, The new shape function f(z) is proposed by[37] as follo

(72 47
f(z)_sm&—wj )

Where:

9()= 112

dz
Based on the small-strain elasticity theory, th@tions associated with the displacements are given as follows:
0 1 2
Exx = Exy + LExy + T(2)64y

.0 1
Eyy =&y + 18y + f(2)e

0 1
7/Xy=7xy+z7/xy+f 7x

®)

Where:

=1- ayz (9a)
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k Aaz_g
o 1 6>2<2 0 kA%+%
22 ayaz 4% kZB—+£
Y (klA+k2A)6’X

For the n" layer, the linear constitutive relations of FGSP are given as:

(n
Oxx (n) (n

Ci Cpy 0 0 0 xx
Yy Cp Cy O 0 0 £yy
fxz =| 0 0 C44 0 0 Vxz (10)
0 0 0 Cy O ryz

0 0 0 0 Cg

fxy

Cijin terms of engineering constants depend on the normal strain:
o Case of 2D shear deformation, then C;j; are:

E(n) (Z)
1-(v™)?
coO —yc® (11)

n n n E(n) (Z)
C§4) = Cs(s) = Cée) = 201+ @

M _ o _
Ch =Cy =

2.2. Stability equations

Applied the principle 6% virtuahworkand based on the adjacent equilibrium criterion, the stability equations are
obtained:

w Vg TT2 0V + 7007, }dV

=0 %GEWOH\—IO Wy O6Wy
Yoy oy Yoox o oy

(12)

}dgzo

x

1 0 1 1 1 2 1 0 1 1 1 2
Ny Oen +M 08, +B, 06, + Ny b + M Se, +P e,

i N Seg + M) Sey +P Sef +Q 5y, +QL Sy,

Xy

do
13)

Jﬂﬁo Wy D0W, 5o Oy DSy o W DOW,

“x o Yoy oy Y X oy }dg:o

Q
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The stress resultants N, M, P and Q of the FGSP are expressed by:

Nl i o (n) Ml i . (n)
XX 3 h X XX 3 h XX
N =Zj oyt dz, M1 =Z.[ o, 2dz (14a)
n=lh , n=lh ,
N>l<y Txy Miy Txy
1 (n
P, s h | Ox Q! s b (7 1™
1 _ @ | _ Xz
P! _Z;j o, f(2)dz, o ‘ZI{T } g(z)dz }1at)
1 n=hyy vz n=lh yz
ny Txy

Where: h, and hy.1 represent the z-coordinates of the top and bottom surfaces, respectivgly! of the n™ layer.
By substituting equation. (8) into equation. (10) and subsequently substituting obtal esults into equation

(14), the stress resultants of the FGSP can be related to the total strains by;

N* ~ _
N ;X Ail A12 0 Bll BlZ 0 Csll CSlZ O .
N;"y A12 AZZ 0 BlZ BZZ 0 Cle CSZ O SSy

o 0 0 As O 0 By O gfy

x* Bll BlZ 0 Dll D12 0 g>1(x
M |=|B, B, 0 D, D, 0 FaaF 0 &, (15a)
M iy 0 0 B O 0 Dy O 0 Fes giy
p! Csy Cs, O Ry Fy Hy, Hy 0 &
pi | [Csy Cs, O FAN 04 H, H, 0 &
Pyly 0 0 GCs, O o 0 0  Hg | _gfy |
Qiz G44 0 }/O

1Tl 0 G (15b)
QyZ 5! }/yz

Where: Ajj, Bij, CSij “Sfetc. are the plate’s stiffness parameters, defined as follows:
11 Csll Fll H 11 3 hy Cll
2 BlZ D12 CSlZ FlZ H12 = Z J. [17 Z’ ZZ’ f (2)1 z f (Z), f 2(2)] ClZ dZ
B66 D66 CSGG F66 H 66 = e C66 (163.)
(A'ZZ’ BZZ’ DZZ’CZZ7 F22' H22)=(All’ Bll’ Dlllcll’ I::Ll’ Hll)
3 M 2
G, =G ZZ J' C,[a(2)] dz (16b)

n=lh -1
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By substituting equations (9a) and (9b) into equation (13), the following equations of equilibrium of the plate are
obtained as follows:

Sun : N:)L(X + aN])Zy _
0" X oy -
onk, NG
Svo: Txx W g
OX oy
(17)
. o2 My My o dPwg o 02wy o dPwg
5WO 2 t + ) *q+NXX 2 *Nyy *Zny =0
ox OXoy ay X oxoy
2 2 1
50: —KgA? %Rt KZB yy (K1A+KZB) Xy+K1A6QXZ+KzB Qyz
ox? a2 oxdy

defined in terms of displacements (U, V,,W,, ) as:

Substituting equations (9) and (15) into equation (17), the governing equations of q@ of the FGSP are
$

82 l aZul 2\,1 83\/\%
oup - L Thwa o2 + Ags 2 +(A12 Ags) axay By o3 ~(
o6} >t
+08, KA 3 +(C3,KpB + Cogs (K A+ K,B)) 1 -

0

(18a)

62u(1) 2V1 pray!

N (Ap + Agg) axay+A22 + Age o

3gL 8391 (18Db)

6x28y

At At o4
oWy BllﬁH(Blz*ZB +(312+2566)ﬁ5 D1 4

4
oals

0
—DZZjQZ(Dl +2D )7—2+F11K1 +F22K237+ (18¢)

491 2w1 2W1 02wt
00 —0 0 0

F K &% K,B + Nyy +N + 2N =0

uf&ﬁ ¥ Zayz) Y Xyaay

3,1 531 1

u 0
2~ (Cs,K,B +Csy (K A+K,B) O oy -Cs KBaT

o3k
+Cs KB

+(CS KjA+Csge (K A+K )

o0

—Cs 1K1

o™} otwg otwg
- (CspK A+ Cogg (K A+ K B))— 52+ Fyy KA 0 F,K,B—2
x20y o oy*

54""(1) 20%% 2065
(KA KB, + 2Feg) - = My (KA 3 —Hap (KB

205

xzax2

(18d)

—(2H,, K AK,B + H g (K A+ K,B)?) 0



8 Tamrabet Abdelkader et al.

2.3. Exact solution for the FGSP under various boundary conditions

Here, we are interested in the analytical solutions of equations (17) for the FGSP under various boundary
conditions can be constructed. A general solution of different boundary conditions is used to solve the governing
equations based on the proposed theory. To this end, the displacement field can be considered as[22]:

oX
" U, Zely, (y)
l o0 o0
\\::;1 =ZZ an Xm(X)aY;T(y) 19)
gl W X0 %)
0

X X (X) Yo (Y)
Where: Umn, Vmn, Wmn, and Xmn, are arbitrary parameters to be determined. Th -@rces are given as

follows:
<0 <0 <0
Nxx =7Neo Nyy=7,Ng, Nyy =0 (20)

The parameter represents the direction of the in-plane forces.
By substituting equations. (19) and (20) into equation. (18), the ined equations are:

Ly Lo L Ly |{Um]| [0
L, Ly Ly Los || Vin _ 0 21)
Ly Ly Ls+¢ Loy |[Wo,| (O
Ly L Ly Las | | Xmn

The elements Lij are expressed as fol

>
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Ly = Aya, — A

L, = (A, + As)ag

Lis =—Bya, — (B, +2Bg) g

L, =(Cs,K,B+Cs (K,A+K,B))a, +Cs, K, A,

Lo = (Az + Ass) g

Ly, = Ana, — Ay,

Ly =—Bua, — (B, +2B)a,

L,, =Cs,,K,Ba, +(Cs,K,A +Cs (K, A+ K,B))ay,

Ly, = Buoys + (B, +2Bg) ey,

L, = Buas +(By, +2Bg) ey,

Ly, =-D,04; — D05 - 2(D,, + 2D )ty

Ly, = FuK Ay, + (R, + 2F5) (K A+ K, B))ay, + F, K, Bag

Ly =—Cs;, K Aay; — (Cs,, K, B + Csge (K, A+ K, B)) ey,

L, =—Cs, K, Bag —(Cs, K A+ Csy (K, A+ K, B))ayy

L, = R K Aay; + (F, + 2F6) (K, A+ K,B))ay, + F,,K,Bag

Ly =—(2H,K,AK, B + Heo (K, A+ K, B)?) ey, — Hyy (K, A)?
—Hy (K, B)2a5 -G, ((KlA)ZO‘g + (KzB)Zas)

é,: Ncr(71a9 +7/20!3)

(22)

With:
ab
(al,a3,a5)=éé(XmYn,XmYn,XmY )Xm dy
ab . . '
(az,a4,a10)=jj(XmYn ’XmYn XmYn dxdy
00
ab (23)
(a6,a8,a12)= | j(XmY mYn )XmYn dxdy
b n n n LLLL
(a7,ag,all,men ,XmYn ’XmYn’XmYn )XmYn dxdy
3. Numerical resu discussion

This“sectie nts and discusses multiple numerical examples of simply supported FGSPs. The goal is to
validate v acy of the proposed theory in predicting the bending behavior by comparing the results with
existing défta in the literature. The FGSPs in these examples comprise Aluminum (Al) as the metal phase and
Zirconia (Zr©2) as the ceramic phase. The mechanical properties of the FGSPs, including Young's modulus,
Poisson's ratio, and density, are defined as follows[3s, 39]

> Aluminum (Al): E,_=70Gpa,v, =03 and p =2702kg/m’
> Zirconia (ZrOz): E, =380Gpa, v, =0.3 and p, =3100 kg/m®

The results of the numerical analysis are expressed using non-dimensional stresses and deflection. The
Dimensionless parameters utilized in this study are listed below:
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_ N&’
“ 100 h3E0
Where the reference value is taken as Eo = 1 GPa

Table 1. Dimensionless buckling load N.r of square plates under uniaxial compression (y1 =-1, y.= 0, a/h = 10)

k Theory 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1
El Meiche et al[40] 13.0055 13.0055 13.0055 13.0055 13.0055
Huu-Tai T et al.[36] 13.0045 13.0045 13.0045 13.0045 13.0045
Meksi et al. [41] 13.0236 13.0236 13.0236 13.0236 13.0236
Present 13.0051 13.0051 13.0051 13.0051 13.0051 /k

0.5 _El Meiche et al[40] 7.3638 7.9405 8.4365 8.8103 9.2176
Huu-Tai T et al. [36] 7.3634 7.9403 8.4361 8.8095 9.21,6A
Meksi et al. [41] 7.3664 7.9442 8.4423 8.8182 9.227
Present 7.3648 7.9412 8.4366 8.8100 2

1 El Meiche et al[40] 5.1663 5.8394 6.4645 6.9495 5072
Huu-Tai T et al.[36] 5.1648 5.8387 6.4641
Meksi et al. [41] 5.1651 5.8392 6.4664
Present 5.1676 5.8405 6.4649 .

5 El Meiche et al [40] 2.6568 3.0414 3.578 4.7346
Huu-Tai T et al.[36] 2.6415 3.0282 3. 4.7305
Meksi et al. [41] 2.6518 3.0369 3575 . 4.7351
Present 2.6590 3.0408 3.5800 4.7347

10 El Meiche et al[40] 2.4857 2.7450 3.1937 . 4.2796
Huu-Tai T et al.[36] 2.4666 2.7223 3.1795 7 3.6901 4.2728
Meksi et al. [41] 2.4808 2.7397 898 3.7048 4.2789
Present 2.4881 2 3.7079 4.2800

Table 2. Dimensionless buckling load N.r of square plates dnder biaxial compression (y1 =-1, y2=-1, a’h = 10)

k Theory 1  2-12 1-1-1 2-2-1 1-2-1
Huu-Tai T et al.[36] 6.5022 6.5022 6.5022 6.5022
Meksi et al. [41] 6.5118 6.5118 6.5118 6.5118
Daikh et al.[34] 6.5026 6.5026 6.5026 6.5026
Present D 6.5026 6.5026 6.5026 6.5026
0.5  Huu-Tai T etal.[36 A 3.9702 4.2181 4.4047 4.6081
Meksi et @ [41] ‘ ’ 3.6832 3.9721 4.2212 4.4091 4.6138
Daikh et al. 3.6825 3.9706 4.2183 4.4050 4.6083
| 3.6824 3.9706 4.2183 4.4050 4.6083
2.5824 2.9193 3.2320 3.4742 3.7528
2.5826 2.9196 3.2332 3.4768 3.7569
2.5839 2.9203 3.2325 3.4748 3.7531
2.5838 2.9202 3.2325 3.4748 3.7532
i T etal. [36] 1.3208 15141 1.7855 2.0512 2.3652
1.3259 1.5185 1.7878 2.0551 2.3676
1.3296 1.5216 1.7900 2.0562 2.3673
Present 1.3295 15216 1.7900 2.0562 2.3673
Huu-Tai T etal.[36] 1.2333 1.3612 1.5897 1.8450 2.1364
Meksi et al. [41] 1.2404 1.3699 1.5949 1.8524 2.1395
Present 1.2441 1.3735 1.5976 1.8539 2.1400

Tables 1 and 2 present the non-dimensional values of the critical buckling load, N, for various types of simply
supported sandwich square plates under uniaxial and biaxial compression, respectively, and different values of index

k. The results obtained from the present theory are compared with those presented by Meiche et al. [40], Huu-Tai
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Thai et al. [36], Daikh et al. [34], and Meksi et al. [41]. It is to be noted that the critical buckling decreases with

increasing index k. Furthermore, the present hyperbolic shear deformation theory (HPT) gives a very good accuracy.

Table 3. Dimensionless buckling load Ner of square plates under Various Boundary Conditions (y1 =-1, y2= -1, a/h = 10).

Boundary k 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1
» Theory
conditions
0.5 3.6817 3.9702 4.2181 4.4047 4.6081
Huu-Tai T et al. [36]
1 2.5824 2.9193 3.2320 3.4742 3.7528
SSSS
0.5 3.6824 3.9706 4.2183 4.4050 .60
Present
1 2.5838 2.9202 3.2325 3.4748 A 1532
0.5 6.8587 7.3942 7.8489 8.1861 MS 3
Huu-Tai T et al. [36] 5390 5 5050 5 0048
1 4. 5471 .0504 D ~ / 4
CSCs 3
0.5 6.8613 7.3960 7.8500 72 8.5583
Present
1 4.8441 5.4744 7.0063
0.5 9.2338 9.9529 11.0011 11.4933
Huu-Tai T et al. [36]
1 6.5434 7.3990 8.7612 9.4443
CCcccC
0.5 9.2438 9.9618 11.010 11.5018
Present
1 6.5565 7.4091 8.7697 9.4524
0.5 10.8640 11. 12.4145 12.9276 13.5006
Huu-Tai T etal. [36]
1 7.7220 23 9.6429 10.3246 11.1229
FCFC /
0.5 10.87 11. 12.4180 12.9315 13.5042
Present
1 7.7353 7409 9.6475 10.3300 11.1273

Table 3 illustrates the effect of various b

index k on the critical buckling load, of

v2=-1, a/h=10). It can be noted that the co

aryy conditions, different schemes of sandwich configuration, and

sandwich plate under a biaxial compression load with (y1=-1,

tion 1-2-1 with FCFC has the highest critical buckling load values.

Furthermore, it has been rpted that the cukrent results agree well with those obtained by Huu-Tai T et al. [36].
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Figure 2.b Critical buckling load Ncr versus the ratio a/h for the different values of porosity coefficient of simply supported FGM
sandwich square plates under bi-axial compression.

Figures 2.a and 2.b show the impact of the side-to-thickness ratio and the porosity distribution on the critical
buckling load N of the FG sandwich plate (2-1-2, 1-0-1, 1-2-1 and 1-1-1), k = 2. It can be seen that the critical
buckling increases with increasing a’h when the inclusion of porosity reduces the critical buckling; this is because of
the porosity coefficient's effect on the plate's stiffness.
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Figure 3.a Critical buckling load Ncrversus the ratio a/b for the different values of porosity coefficient of simply supported FGM
sandwich plates under uniaxial compression.
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Figure 4. Critical buckling load Ncrversus the ratio a/b of the (1-2-1)/ (1-0-1) porous square FGM sandwich plates with various
boundary conditions under uniaxial loads
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Figure 5. Critical buckling load Ncr versus the ratio a/b of the (1-2-1)/ (1-0-1) porous square FGlvsal ic tes with various
boundary conditions under bi-axial loads

with Jatio a/b resting on different
boundary conditions under uniaxial compression loads. The plate with a igher volume fraction of ceramics has a
significantly higher Critical buckling load Ncr than the plate with a higher al volume fraction, particularly for
plates with a larger a/b aspect ratio. Notably, the plate with all e amped boundary condition shows the highest
non-dimensional Critical buckling load, owing to the aiore significant gonstraint at the edges, as depicted in Figure

5.

4. Conclusion
This study aims to analyze the effect of ifferent porosity sizes and various boundary conditions on the

stiffness of the sandwich plate mad graded materials under axial and bi-axial mechanical loading.

So, an efficient higher-order theory is.prop or analyzing the buckling response of functionally graded sandwich
plates; the mathematical @rmula on, indluding the indeterminate integral terms in the displacement field, and the
governing equations are obtdine milton's principle. The study presents analytical solutions with different
boundary conditions. | m&nerical results to validate the accuracy of the proposed theory.

The following caRclus rom the numerical computations are given as follows:

eveal that the buckling load for fully clamped-free-clamped-free boundary conditions is
er boundary conditions, including simply supported-simply supported, clamped-clamped,
ed-simply supported.

e, 1-2-1 type sandwich has the highest critical buckling load, while the 2-1-2 type has the lowest.

e results also suggest that the side-to-thickness ratio's effect on the critical buckling load of FGM
sandwich plates diminishes for larger ratio values.

o Finally, the study shows that increasing the porosity coefficient reduces the critical buckling load values.
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