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Abstract

Pores affect functionally graded materials. Further ¢
added if pores expand from the surface to the interior.
porous beam (FGPB) bending response is zed using a specific shear
shape function that accounts for, bo and uneven porosity
distributions. Power law changes characteristics of FGPBs with
uniform and uneven porosity di i
order to determine the maximum rse deflections, axial stresses,
transverse shear stresses, and normal)Stresses in simply-supported and
clamped-clamped beams, ical calculations are performed with various
gradation exponents, asp atigs (L/h), and porosity levels (both even and
uneven). The obt compared with earlier investigations and
justified.

Keywords: K“m—Tu er conditions; Third order shear deformation theory; Functionally graded porous

beam.
1. Introduction /\’
ects

Microstructure a rial behavior. Materials engineers modify microstructure via processing. Traditional
processing studigS{might optimize microstructural properties for uniformity. Same-microstructure improves

i ase performance and dependability in a certain application or boundary conditions. Microstructure

ral materials systems. FGM interlayers steadily modify ceramic and metal proportions. Aerospace,
marine, angl_civil engineers employ porous material [3], [4]. These compounds alter porousness steadily as you go
m. Porous foundation material has holes in various places. Pore size and number affect porosity [5].
Static and moving load responses of FGM structures are essential in structural design. Theories [6] anticipate FGM
constructions' mechanical load responses. The two-layer shear deformation hypothesis of Nguyen et al. [7] explains
beam bending. Wattanasakulpong [8] investigated porous beam linear and nonlinear vibration using classical beam
theory (CBT). CBT only works for thin beams because it ignores shear deformation. The First Order Beam Theory
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(FBT) [9] accounts for shear deformation in medium-thick beams because of its importance. Chen et al. [10] analyzed
porous beams for static, buckling, and vibration [11]. Wu et al. [12] examined beam structural dynamics. Gao et al.
[13] used FBT to calculate beam frequencies computationally. Noori et al. [14] examined beam frequency changes.
They used FBT and complementing functionalities. Lei etal. [15] studied FG beam dynamics. Magnucka [16] modified
Timoshenko beam theory (TBT) to analyze sandwiched beams for dynamic and static stability.

Higher-order beam theories (HBT) [17, 18] may solve FGP beam problems. Wattanasakulponget al. [19] calculated
porous beam free vibrations using third-order beam theory and Chebyshev collocation. Beams placed on foundations
were analyzed using the novel polynomial [20], trigonometric [21], and exponential shear functions [22]. Polit et al.
[23] created an HBT to calculate curved beam stability and bending. HBTs don't need shear correction factors since
they employ shear shape functions. Shear shape functions affect HBT accuracy. Researchers created more than shear

shape functions. They revised theories to reduce unknowns. Shimpi [24] divided displacement fields i ear and
bending components to better analyze isotropic plates. Akbas [25] offered FEM for beam stabilit tural
frequenciesanalysis. Anirudh et al. [26] employed a FEM to analyze variations in a curved beam. Faig et a used
iso-geometric analysis for static and vibration analysis. Ebrahimi [28] employed the differential r pproach
to analyze rotating beam vibration, whereas [29] used the Transfer Matrix Method to study porous beam vibration.
Zhao etal. [30] studied deep-curved beam vibration using modified Fourier series. Jamshidi sed t itz approach

to investigate how FG beams vibrate and fail to design them.

Earlier studies have mostly examined the bending characteristics of bi-directi
beams. The novelty of the present study incites a mathematical approach in adapting
solution approach and R-program to assess the significance of the gfa i
functionally graded porous beams (FGPB) and solve equilibrium equatio
material distributions.

This is apparent based on the utilization of deformation theories in the aforemeéntioned debates. The significance
of thickness is crucial, especially in the context of two-dimensional functionally graded porous beams. Therefore, it
is essential to investigate the shear and normal deformation theor, njunction with different boundary conditions,

f ally graded porous
uhn-Tucker (KT) conditions

found to yield precise outcomes in the field of struct eréfore, the HSDT with a third-order accuracy is
employed to analyze the bending characteristics of a r prescribed boundary conditions adapting KT

2. Nomenclature

2D-FGB Two directional functio raded beam
CBT Classical beam

ccC Clampedclam d

FBT First order peal

FGM Functio ded materials

FGPB ctionaPfunctionally graded porous beam
HBT beam theory

HSDT her order shear deformation theory
SS i upported

B imeshenko beam theory

ubDL iformly distributed load

3. Formulation and mathematics

3.1. Formulation of functionally graded porous beam

In the light of HSDT, a beam is modelled as a slender structural element exhibiting bending and shear behaviour.
The beam is assumed to be straight and uniform along its length, with small deformations and linearized equations.
Warping effects, involving twisting of the cross-section, are disregarded, and the assumption is made that the initially
plane cross-sections remain plane after deformation. Material properties are considered to be constant throughout the
beam, simplifying calculations and analytical solutions. The coordinate system utilized for FGPB in the current study
is depicted in Figure 1. The material properties exhibit continuous variation along the length and thickness directions.
A FGPB is modelled through the gradation of ceramic and metallic phases along the direction of thickness. The bottom
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portion of beam located at z = -h/2 is composed of ceramic, while the upper portion at z = +h/2 is comprised of metal.
The volume percentage of the component materials determines the material characteristics of FGPB.

X

Fig 1: Beam that is functionally graded, with even and uneven pogesity

It is to be anticipated that there will be a relationship, both functional @ tural,"@Mong the thickness and the
material's properties. As demonstrated in Eq. 1, the power law distributioniin )and z could be utilized to accurately
express the volume fraction of one constituent as (V) [32].

1 1

e =(+1)" G+ a2

Ve (x,2) + Vi (x,2) = 1 (1b)

In this context, P, and P, are the gradient indices which ibe the volume fraction over the whole course of the
length as well as the thickness of the beam, respectively. It isthen possible to express the functional characteristics of
the material (P) of evenly distributed FGPB as

z 1\Pz fx Py a
P(x:z)=(Pc_Pm)(;+E) I _;(P0+Pm) (za)

where a denotes the por?ity co‘ﬁcienth(o <a < 1), m represents the presence of metal, whereas ¢ denotes the

presence of ceramic. As per the y mentioned correlation, the Modulus of Elasticity (E) is utilized for the
evaluation of material rigi s well as the moment of inertia in an evenly distributed FGPB, and can be
mathematically represehited as s in Eq. (2b).
EGoz) = (B ED (C+) (E4 D)+ B - 26 + B (2b)
! ¢ mI\L 2 ho 2 m. g Ve m

isYa marginal variation when using Poisson's ratio contrasted to various properties, this is deemed
as calculations are carried out employing the mean value. Similarly, one may determine the effective
characteriStics of the component with distributed but even FGPB using the Eg. (2c).

x 1

PO = (= P) (2+3) 7 (242) "+ B -2+ B (1-2) (20)

E for unevenly distributed FGPB could be approximated through the use of Eq. (2d).

x 1 2|z|

E(x,2) = (B, — En) (5 + ;)P (F+ -)Px + By — (B, + E,) (1-22) (2d)

L 2
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Static and dynamic structures require well-designed FG beams and plates. This reduces production costs. The
buckling, bending, and vibration evaluation of FGM structures designed using traditional beam and plate theories
usually overestimates structural deflections, critical loads, critical buckling and natural frequencies. Standard beam
and plate theories determine critical loads and natural frequencies. Thus, shear deformation FG beam theories should
be used to increase forecast accuracy. The Cartesian coordinate system of the FGPB starts at the neutral beam axis
while the beam's thickness limits the deformations and extension, bending, buckling and shear cause x-direction
displacements. Porosity affects the transverse shear as well as the normal strain. The displacement field that satisfies
the postulates of the beam are based on the constitutive equations, Egs. (3a), and (3b) [33, 34].

]
UG, 2) = up() +20(0) — £(2) (200) + 52 (x)) (3a)
W(x,z) = woy(x) b)

where axial as well as transverse displacements are represented by U and W respectively. A sition along

the neutral axis, u, and w, represent the axial as well as transverse displacements, respectjvely. The bending slope is
denoted by %, and @ the shear slope. The transverse shear deformation may be detgfmi tilizing the shape
function f(z), and the mathematical equations describing the non-zero straj obtained by using Egs. (4a)

and (4b), respectively, as,

_0U _ dug 32wy a0 azwo)
& = ax ax dx2 +f() (6x + dx2 (42)

==2_

W(x,z) = wy(x) (3b)

where axial as well as transverse displacements are r
the neutral axis, u, and w, represent the axial as well as
denoted by aﬂ, and @ the shear slope. The transverse shea
function f (5"[34], and the mathematical equations describi
(4a) and (4b), respectively, as,

d W respectively. Atany given position along
isplacements, respectively. The bending slope is
rmation may be determined by utilizing the shape
the non-zero strains could be obtained by using Egs.

a a 92 92
=5 =002 () (5, NG )
, a
Ve = £ [000) + 28 (4b)
473
f@) =15 5)
In accordance Hooke's Law and with the assistance of Egs. (4a), and (4b), the following field equations

representing stress ¢ e derived:

(6a)

Vxz (6b)

3.2. Governing equations

The governing equations can be deduced by beginning with the principle of virtual displacements. The principle
that actual work can be performed result in,

,(6U +6V)dt =0 @

where, tis time, U, 8V, are variations in strain energy, and variation of work done, respectively. Variation in strain
energy in a FGPB is shown in Eqg. (8).
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h

U = % J‘OL fjﬁz(axgx + TazVxz)dzdx ®
2

8V = — foL qéw, dx o

The beam's bending stress in regards of virtual strain energy as work energy can be demonstrated by,

B=6U+6V=0 (10)
L h L
fo f_zﬂ(o'x(ssx + Ty 0¥z )dzdx — fO qéwy dx =0 1)
2
Loph/2 dug _ 9%w 9 , 3w , aw, L _
Jo f_h/z (0x6 (a—x" -z +f(2) (5"‘ 720)) + Tyusf' (2) [(D + a—x"]) dzdx — f(@i = (12)
L (9NxS 0°Mp8 M9 | 92M;S 000 L
fo ( Bxuo B azzwo + ox + 6x2wo + Q80 + Two) dx — fo qéwo =0 (13)
N, 1
h
Mb = f_ZEO'x Z dz (14)
2
|.MSJ f(2)
h
0 = [mocf () )
2
Sup = —-N, =0 (16a)
92 92
Swo = S5 My =5z My+q - U= (16b)

50 =M, + Qs =& ‘ ) (16¢)

Assume that £, ( 1/2, .....m) are all differentiable if the function f,(x) attains at point x° a local

minimum subject f@lthe set K= {f_’(cx) <0(i=123,.. ....m)} then there exist a vector of Lagrange multiplier U°
such that the followi nditions are satisfied.
(x| N0 ()
_— U ————==0(G =123, .... ,
0x; + z bo0x Y ™

i=
fi(x)<0(@i=123,...m)
W) =0(@=123,..,m)
uw >03Gi=1,23,..m)

These conditions are necessary conditions for a local minimum of problems, for maximization problems, the non-
negativity condition U° < 0, are called the KT condition.
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Ly, = /o) + ) w(fil) +yP)

The necessary condition for its local minimum are,

L 9fy(x% i L AL + (2]
_— 4 u; =0
ax]' ax] = ax]

oL

%0 =0 (j=1,23,...

daL
S = G+ 0P =0 (=1,23,..m)
L

fo[x°(b)] 0 (i
a—bi— —ui (l - 1;2)35""

Without slack variables, the mathematical problem,

Lew) = 00 + ) /(o)
AL
&

Vf:(x")

fo(xo)

X

Fig 2: Kuhn Tucker condition

The K ndition can be rewritten as,

LD =123

ax,. =0(=123,....n)
6L(x°,u°)<0 123

o <0(i=123,....m)
QE)L(xo,uo)

u =0(i=123,...m)

¢ ou;
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u>0(i=123,..m)

If the multiplier u;is positive, then the corresponding i constraint is binding (boundary solution). When the
function uy(x, v), wo(x,y), and @, (x, y) are expressed as generalized co-ordinates, it can be represented as Lagrange
equations. KT condition can be written as follows:

uo(x,y) = X1, £f;(x°)0;e 7)
wo(x,y) = X fi(x) e (18)
Bo(x,y) = XL, fi(xO)pe™ 9)

where, 8;, ¢;, and ip;are the three different boundary conditions and A is the scalar.

3.4. R-programming for KT conditions

R-programming in KT conditions can greatly enhance the efficiency and versagil Iving constrained
i nlinear optimization

problems with constraints. By integrating R programming into the analysis,@ ions, one can take advantage
of R's robust mathematical libraries and data manipulation capabilitie -program into the process
allows for the efficient computation of gradients, Hessians, and constraint ons, which are crucial components of
KT conditions. R's extensive package ecosystem, including ‘optim’, 'nloptr guadprog', can be leveraged to find
numerical solutions to optimization problems while adhering to KT conditiong” Furthermore, R's data visualization
capabilities enable the effective representation of optimization res |d|ng in the interpretation and decision-making
process. By writing R scrlpts to handle KT condltlons a flexible and customlzable approach to

provides a platform for rigorous sensitivity analysis an
optimization solutions in various real-world applications.
up a powerful avenue for tackling constrained optimization ¢
for (iin 1:n)

{
Amat[i,i] <-1 # coefficin
Amatli,i+1] <- -1 # coefflcmt fo 1]
for

lusion of R-programming in KT conditions opens
lenges efficiently and effectively.

Amat[|n+1+|]< 1 #coe

}
for(i in (n+1):(2*n))

{
Amat[i,i+1] <-1
Amat[i,n + 1 + jp<- “Tucker

}
A.mat[nrow(A. -1,1] <-1 # coefficint fori_[1]
A n+1] <-1 # coefficint fori_[1]
A

sol <8Rglpk ‘solve_LP(obj = c.vec, mat = A.mat, dir = const.vec, rhs = b.vec, types = vtype.vec)
list( 1 ¥ sol$solution[1:(n+1)], # inventory levels
sol$solution[(n+2):(2*n+1)], # order quantities
y = tail(sol$solution, n), # order indicators
d=d.vec) # demand
R-programming for KT conditions is utilized for mathematical calculations, as stated in Table 1.

Table 1. The boundary conditions based on the R- programming adapting KT conditions

Demand x=0 x=1L
SS=q u=0w=0 w=0
CC=y u=0w=0,0=0,w =0 u=0,w=0,0=0,w' =0

CF=d u=0,w=0,0=0,w =0
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From Table 1, the following conditions are framed:

a%m 0%m 2%m

_:0’—20’—20 20
an2 aNj2 apjz (20)
[Fi1 Fiz Fis 0 0 O0O])[M] 0
F,y Fp Fp|—2%2|0 R,, Of¢[N]|=]{0
[F3y F3; Fag 0 0 O0VLPI [0
[F11 Fiz Fis 0 0 0N [M] [0]
Fyy F,y Fy3|—10 A%2R,, O[¢|N|[=]0
| F31 F3, Fi3 0 0 0JJLP] 10
L
Fll(i!j) = Mf elx(x-'—l) 9i,x, Qj'xdx
0
L
Fi,(i,j) = F1(i,)) = Pf eMx(x+1) 0;x 0
0
i dx
Ry, =Ry Ry 1=Ry;3=R3; =R33 =R33=0
20)) = (M — BN)[F35 (i, )]
@

hodol can be assessed by employing a specific case study. This analysis encompasses the
influence of gradienhindexes, aspect ratio, and porosity index, specifically the composition of materials, on the

A|Um . Eci 80 GPa, He = 03
AlumiRium: En= 70 GPa, pum = 0.3

Non-dirménsional maximum transverse deflection (w) for SS and CC beams could be estimated using Eq. (21) and
Eq. (22) for CF beam.
— _ 100Emh? w(x, 0) (21a)
qolL
= 100E,h3 w(L, 0) (21b)
qolL

The axial stress (a,) could be estimated using Eq. (23).
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5 =2 (22)
The transverse shear stress (T,) could be estimated using Eqg. (23).
Ty =220 (23)
The normal shear stress (o, ) could be estimated using Eq. (24).
T = 22 (24)
Numerical results may be obtained using various gradation exponents in both directions (x S ratios,
and boundary conditions. A uniformly distributed load (UDL) is imparted to test the FGPB and ned results
on transverse deflection, axial stress, shear stress, and normal stress are compared with ear}i€ginvestigetions [36, 37]
and presented in Table 2.
Table 2. Validation of HSDT with SS boundary condition
Function Method P=0 P=1 P pP=5 P=10
Transverse deflection L/h=5 g
[36] 3.1654 6.2594 677 9.8281 10.9381
[37] 3.1654 6.259 8. 9.8271 10.9375
Present 8.123 9.6832 10.7834
L/h=20
[36] 7.4421 8.8182 9.6905
[37] 7.4412 8.8173 9.6899
Present 7.5347 8.8233 9.6231
Axial stress L/h=5
[3 3.80 5.8836 6.8826 8.1106 9.7122
[37] 3.804 5.887 6.886 8.115 9.717
t 3.8122 5.7882 6.7822 8.2112 9.7102
h=20
[3 15.0129 23.2053 27.0991 31.813 38.1385
7] 15.02 23.22 27.11 31.83 38.16
Present 15.0132 23.1832 27.1023 31.7812 38.1251
Transverse shear stress L/h=5
[36] 0.7332 0.7332 0.6706 0.5905 0.6467
[37] 0.7335 0.7335 0.67 0.5907 0.6477
Present 0.7324 0.7423 0.7021 0.6109 0.6322
L/h=20
[36] 0.7451 0.7451 0.6824 0.6023 0.6596
[37] 0.747 0.747 0.6777 0.6039 0.6682
Present 0.7581 0.7442 0.6811 0.6102 0.6587
Normal shear stress L/h=5
[36] 0.1352 0.0672 0.0927 0.0182 -0.0179
[37] 0.1352 0.0671 0.0925 0.0182 -0.018
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Present 0.1432 0.0702 0.0899 0.0201 -0.0212
L/h=20

[36] 0.0338 -0.5874 -0.6261 -1.169 -1.556
[37] 0.0338 -0.588 -0.6226 -1.176 -1.5589
Present 0.0381 -0.5992 -0.6132 -1.2012 -1.4997

4.1. Transverse deflection of a FGPB as a function of porosity and gradient exponents
FGPB under UDL is analyzed at aspect ratio and gradation exponents to evaluate how porosity (even and uneven)

affects transverse deflection. Aspect ratio reduces dimensionless transverse deflections. Uneven porosi FGPB
may modify stress distribution considerably as seen in Fig. 3.
As shown in Fig. 3, transverse deflections increases in two directions with increasing porosity~inde even

porosity in the beam distributes voids unevenly which causes material stiffness to vary, causing vati
to deflect differently under load. Porosity affects deflection in which, the FGPB with ev rosi
steeper material property gradient over its thickness with a greater gradation exponent. Stif gt aterial reduces
the transverse deflection under the same force while the volume proportion and sizegof itls and the material
ction [35]. Gradation exponent
affects transverse deflection more complexly in SS beams with unequal por t the places with significant
deflection [36]. A greater
ing the increased deflection in high-
eam with unequal porosity relies

gradation exponent may also stiffen the material in low-porosity parts,
porosity regions. The gradation exponent's influence on transverse deflectio
on its distribution and variance. Porosity effects the transverse deflectio
perpendicular to the beam's length when a load is applied, in CCNS.

6 -]

Transverse deflection

I 0.1

0 - [ Ja=02
10 ~ -~
" 10

(I}B ~ \\ e by
%Gﬂf > ~— ,——'(—’/ &) P \
4 ~ —  (PZ

?O?c))l s \A_// - " .\_ﬂde}\ L

1Y) 0 0 G\‘E\d\e
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Transverse deflection

Fig 3: Comparison of transverse deflections of SS beam having (a) even and (b) uneven po wient index

aterial stiffness. The
CC boundary condition further requires a beam node positioned at the cep oid es the uniformity of the
i increase in deflection [35]

gradient of material qualities makes
onditions' nodal point near the center.

may stiffen the material and minimize transverse deflection under stress. A stee
the beam's material more uniform, making it simpler to retain the CC boundary

Transverse deflection

—
S o
"

Transverse deflection
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Fig 4: Comparison of transverse deflections of CC beam having (a) even and (b) uneven porosity, and gradient index

4.2. Axial stress of a FGPB as a function of porosity and gradient exponents

Porosity affects mechanical parameters like Young's modulus and Poisson's ratio in SS beams with even porosity.
As can be seen from Fig. 5, more porosity may reduce stiffness and increase deformation under axial load, increasing
beam axial stress. This may cause non-uniform beam deformation and stress distribution, with lower porosity parts
having greater stress and higher porosity areas having lower stress. The gradient index affects axial stress based on
material porosity and beam loading circumstances. A larger gradient index may provide a sharper material property

gradient through the thickness of an SS beam with even porosity. This may make the material sti nd less
deformable under axial loading, lowering axial stress. Nevertheless, larger porosity may weaken the jial and
make it more deformable under axial loading, increasing axial stress. Gradient index affects axial sttgss differeptly in
SS beams with unequal porosity. Porosity distribution may impact material characteristics thrgu the beam's

thickness, affecting its capacity to withstand deformation under axial stress. A steeper_g
characteristics in locations with reduced porosity might enhance stiffness and reduce
Nevertheless, regions with larger porosity may be weaker and more prone to dif?ﬂ

nt Jof material
ﬁ» oadifg deformation.
On umder axial loading,

increasing axial stress.

‘ (@

Axial stress

I =

Axial stress

»

Fig 5: Comparison of axial stress of SS beam having (a) even and (b) uneven porosity, and gradient index
As demonstrated in Fig. 6, a CC beam with unequal porosity may vary in stiffness and deformation throughout its
thickness. Low-porosity regions are stiffer and less deformable, lowering axial stress. Higher porosity weakens and
deforms the material, increasing axial stress. Gradation exponents affect the material's characteristics over a CC beam's
thickness, affecting axial stress. In a CC beam with uniform porosity, gradation exponents may affect material stiffness
and deformation throughout the beam thickness. Stiffness and deformation vary more with a larger gradation exponent
because material qualities change faster with thickness. This may balance out beam stresses, lowering axial stress.
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Nevertheless, a smaller gradation exponent will result in a more gradual change in material characteristics throughout
the beam thickness, which might cause uneven stress distribution and greater axial stress. Gradation exponents may
complicate axial stress in CC beams with unequal porosity.

-

6 - (@) C Ja—0.2

Axial stress

Axial stress

hnwaneaey
> /10

- 6 .
\/f 4 (ndex (P7)

Gradient

Fig 6: Compalgon of a tr f CC beam having (a) even and (b) uneven porosity, and gradient index

B a ction of porosity and gradient exponents

osity and gradient index effects. Shear stress will be generally consistent throughout the
en. rtheless, variable porosity will change shear stress. Shear stress is greatest in the least
m and lowest in the most porous. The least porous sections of the beam are stiffer and resist
ing in larger shear stresses. The most porous portions of the beam will deform more and have

4.3. Shear stress of a

Fig. 7 shows SS
beam if porosity i
porous regions of a
deformati
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Shear stress

0.34 -
0.33 -

0.32

0.31

Shear stress

0.29 -
0.28 -

Fig 7: Comparison of shgar stress of $S beam having (a) even and (b) uneven porosity, and gradient index

Fig. 8 shows CC beamfporositysand gradient index effects. Shear stress is greatest near the middle of a CC beam
and lowest at the clamped . tress will be generally consistent throughout the beam if porosity is even.
Shear stress will chandg,i pm/aries along the beam. Shear stress is greatest in the least porous regions of a CC
beam with variable p an est in the most porous. The least porous sections of the beam are stiffer and resist
arger shear stresses. The most porous portions of the beam will deform more and have
lower shear stres radation exponents affect shear stress more in CC beams. A higher gradation exponent causes
aterial characteristics along the beam, which may generate more deformation and shear
owest gradation exponent will have lower shear stresses. Porosity, gradation exponent, and
material ctepistics all impact shear stress. A greater gradation exponent, higher porosity, and lower stiffness
might inckgase shear stress in the beam, particularly near the center. Bending moment also affects shear stress in CC
beams. E al weights or beam curvature create bending moments.
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0.845 ]

0.84

0.835

Shear stress

0.83

0.825 _]

0.44

0.435 -

0.43

0425

042 |

Shear stress

0415

041 -

10

0o 0
7

Fig 8: Comparison of shear stress of C having (a) even and (b) uneven porosity, and gradient index
0

y and gradient exponents
ith a greater gradation exponent changes material characteristics more

4.4, Normal stress of a FGPB as a f ion
As demonstrated in Fig. 9, an SS bea

quickly throughout its thickness. ending”Zmoment, which depends on the applied load and material stiffness,
determines SS beam normal stregs. In a JFGPB, material qualities may impact stiffness and normal stress. Higher
gradation exponents increasegbea I stress, making the beam stiffer. A stiffer beam resists load deformation,
increasing normal stress. complicates the influence of gradation exponent on normal stress. VVoid material
reduces the effective -sectl area available to withstand deformation, decreasing beam stiffness. Increased

porosity index lowef® b rmal stress. The beam loses stiffness and deformability, lowering normal stress.
Porosity lowers ness, ile the surrounding material's greater stiffness compensates, resulting in a more
complicated normal distribution.

0.105 -
0.1 -

0.095

Normal stress
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Normal stress

Fig 9: Comparison of normal stress of SS beam having (a) even and (b) uneven porosity, and ient Inde.

Fig. 10 shows the considerable influence of porosity on normal stress in a CC beam u ig and uneven
porosity. Higher porosity indexes reduce beam normal stress. Because material gaps or weaken the beam. A CC
ion ex s may significantly

increase beam normal stress.
ness and length, stiffness

Normal stress

0.09

0085 -

0.08 -

Normal stress

Fig 10: Comparison of normal stress of CC beam having (a) even and (b) uneven porosity, and gradient index
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5. Conclusion

HSDT is utilized to conduct an analysis of the elastostatic behavior of FGPB that has been subjected to varied
boundary conditions and a uniform load using a rigorous formulation. Transverse deflections, axial, shear, and normal
stresses are estimated. The accuracy of the new approach is evaluated by analyzing a FGPB with simple support and
the obtained results are compared with those of previous research. Consideration is given to three distinct border
conditions: SS, CC, and CF. these conditions feature distinct gradation exponents in the length and thickness
directions, as well as various aspect ratios. It has been determined that the HSDT method produces satisfactory
outcomes. Noteworthy findings of the analysis are listed below:

e AtP,=0.1and P, =0.1, the transverse deflection for CF beam is found to be 20.007. While at Px = 0.5and P, =

0.5, itis 15.512. Similarly for CC and SS beams, the transverse deflection at the same conditions wer nd to be

7.545, 3.807, 7.132, and 3.125. The CF beam typically exhibits the most significant effect, follow ccC
and SS beams.

e In a SS beam, increasing the gradient index results in a decrease in axial stress near the suppgrt increase
in axial stress at the center of the beam. In a CC beam, increasing the gradient index results.i ecrgase in axial

stress at the center of the beam and an increase in axial stress near the clamped ends.

¢ Increasing the gradient index has a decreasing effect on the shear stress in a SS beam. CCdbeam, the effect of
gradient index on shear stress is dependent on the distribution of the por05|ty eve sity, increasing the
gradient index leads to a decrease in shear stress, while for uneven porosj ing the gradient index leads to
an increase in shear stress.

o The effect of gradient index on normal stress is more pronounced in4f

dle region’of SS, and CC beams, where
to a more uniform stress distribution
the beam.

generate stress concentrations in locations with greater poro though the impact on stress distribution is
insignificant for typical stress. Uneven porosity, on th cause stress concentrations in unexpected
areas. Due to the averaging effect across a broader r Sity has no influence on normal stress.
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