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Abstract 

Friction Stir Welding (FSW) has revolutionized modern manufacturing with 

its advantages, such as minimal heat-affected zones and improved material 

properties. Accurate torque prediction in FSW is crucial for weld quality, 

process efficiency, and energy conservation. Many researchers achieved 

models for torque based on experimental research, yet the models were 

limited to a specific type of material. In recent years, the use of machine 

learning techniques has increased in industry in general and in welding in 

particular. In this study, a machine learning model was prepared based on 

artificial neural networks, and Shapley-Additive Explanations were used to 

predict the rotational torque from 287 experiments that had been conducted 

in several previous studies. The achieved model has remarkable predictive 

performance, with an R-squared of 99.53% and low errors (MAE, MAPE, 

and RMSE). Moreover, a machine learning polynomial regression was 

examined for comparisons. A parametric importance analysis revealed that 

rotational speed, plate thickness, and tilt angle significantly affect torque 

predictions, while the rest of the variables had minimal importance. 

Keywords: Friction stir welding; torque prediction; Artificial neural network; Parametric study; Shapley 

Additive Explanations 

1. Introduction 

Machine learning is a unique technique branching from artificial intelligence, based on enabling computers, 

through specific algorithms, to learn from available data and be able to predict outcomes [1] . In the last decade, 

machine learning has emerged as a successful tool in improving the performance of many industries [2, 3]. It has 

undoubtedly contributed to achieving the optimal values for the inputs to obtain the highest possible efficiency [4]. 

Machine learning is one of many methods used for modeling, analyzing [5-7]  and optimizing [8-10] engineering and 
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science[11] problems. Researchers and users of welding machines are not late in investing in the capabilities of 

machine learning in analyzing data and creating advanced algorithms in many processes, especially in fusion welding 

such as laser welding [12], arc welding [13, 14], and spot welding [15, 16]  In addition, solid state welding has also 

benefited from machine learning techniques such as ultrasonic welding [17] and friction stir welding [18]. 

 

In the late 1990s, friction stir welding (FSW) was invented as a solid-state welding method [19, 20]. During the 

FSW process, as shown in Fig 1 , two plates of similar or dissimilar metals are joined by passing a non-consumable 

tool that rotates at a certain rotational speed until plastic deformation begins to occur between the two plates. Then, 

the tool moves at a transverse speed along the area to be welded, and then the tool rises, leaving a hole at the end of 

the welded area[21, 22]. 

 

 

Fig  1: Friction stir welding process and tool parts 

 

In recent years, the use of FSW has expanded steadily, and it has become capable of welding dissimilar metals, 

such as aluminum to copper [23, 24] and magnesium to copper [25]. It has even surprised many researchers with its 

ability to weld metals with melting points far apart, such as welding magnesium to steel [26, 27]. The high ability to 

weld metals demonstrated by FSW processes opened the door to more unconventional processes, such as welding 

similar or dissimilar polymers [28, 29] or welding polymers to metals [30]. The results were original and very 

encouraging. 

 

The rotational speed and transverse velocity of the tool, in addition to the tool geometry, especially shoulder 

diameter, pin profile, plunge depth, and tilt angle, are considered the most influential input parameters in the FSW 
process, as shown in Fig 2 [31, 32]. Torque is an indicator for applying load during FSW, and it is an essential quantity 

and has an impact on the welding quality. Accurate torque prediction in FSW affects heat generation, material 

softening and plasticizing, stirring action, penetration depth, process stability, and parameter optimization. In other 

words, by controlling torque, heat generation during welding is effectively managed, influencing the material flow 

and, consequently, the mechanical properties of the weld. This control not only enhances weld quality but also prevents 

excessive tool wear, extending the lifespan of valuable FSW equipment and significantly lowering energy costs, 

contributing to both economic and environmental sustainability while maintaining superior welding outcomes. 
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Fig  2: Main parameters of the FSW process 

Several studies dealt with torque measurements during FSW processes. S. Cui et al. [33]studied the effect of 

rotational speed and forward speed on torque when welding A356 aluminum alloy using FSW. They prepared a linear 

model to describe the relationship between them that allows for a detailed evaluation of torque sensitivity to these 

inputs. J W Qian et al. [34] revealed that the torque and the fraction of slipping exhibit variations with an identical 

periodicity, precisely matching the time taken for a single rotation of the tool for FSW of commercial aluminum alloy 

(AA1100-H14). Aluminum alloys containing copper, such as AA2024, have been the focus of studies by several 

researchers to find torques, such as L. Shi et al. [35], and Pew et al.[36] , who used AA2024-T3, while Su & Wu used 

AA2024-T4[37]. The effects of torque on the nugget and heat-affected zone regions in this class of alloys when using 

FSW were studied by Junhui Yan et al.[38] The most extensive study of torque calculations for this type of alloy was 
done by Long et al.[39]. Although the study focused on AA2219-T87, it included comparisons with aluminum alloys 

of other categories, such as AA5083-O and AA7050-T751. Torque in FSW has been the focus of study by many 

researchers using the superior hardener Aluminum 5xxx alloys, which are strengthened with magnesium, such as 

AA5083-O [39], AA5754 [40],  and AA5052-H34 alloy [41-43]. The strength-to-weight ratio provided by AA6XXX 

alloys, along with their improved mechanical properties, has emerged as a critical set of criteria, so these alloys are 

widely used in FSW, including torque measurements such as AA6061-T6 [44-48] and AA6092. Finally, Torque 

measurements of extruded wrought aluminum alloy AA7xxxx based on manganese content showed that these alloys 

can withstand high torques, especially AA7050-T7451 [47, 49] and AA7075-T6 [50, 51], in addition to AA7039 

[50]alloy. Torque studies were not limited to welding similar alloys but rather extended to include dissimilar alloys, 

especially aluminum alloys, such as joining AA5083-130 HV and AA6082-T6 [52], as well as joining AA6061-T6 

and AA5083-H111 [53]. 

 
Despite the importance of torque in FSW operations, studies that discuss this importance are still limited and do 

not give a unified view of the importance of torque or methods for predicting it. Therefore, there are research gaps 

and points that need to be highlighted. The current study chose a unique approach to studying torque and the possibility 

of predicting it through parametric analysis of previous studies based on harnessing the power of machine learning, 

specifically artificial neural networks (ANN). This approach is considered a departure from traditional methods, as it 

is possible to understand the complex relationships between the various input parameters and torque. This study 

investigates both similar and dissimilar aluminum alloys. 
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2. Materials and Methods 

2.1. Experimental Studies  

The current study was built based on data from 287 experiments conducted in 22 previous studies for aluminum 

alloys, as shown in Table 1. The study included the most used categories in FSW studies, which are AA1xxx, AA2xxx, 

AA5xxx, and AA5xxx alloys with different heat treatment ranges. 

Notably, the data pool exhibited a mixed nature, with numeric data complemented by values extracted from 

graphical representations. The dataset contains experiments on similar and dissimilar plates. All pins are either 

cylindrical or conical in shape. A type of correlation was used to overcome the lack of pin length in several studies. 

A distinctive feature of the dataset was the replacement of pin-related attributes. The dataset's summary statistics in 

Table 2 offer insights into the dataset's distribution and central tendencies, where T is torque, RS is the rotation speed 

of the tool, and WS is velocity. R1, R2, and R3 are the radius of the shoulder, pin base, and pin tip, respectively. L0 

is plate thickness, L1 is the tool's pin length, and Alpha represents the tilt angle. The AS TS and RS TS are the tensile 

strengths of the advancing and retreating plate sides, respectively. 
 

 

Table 1: Welding configurations of the examined studies 

Exp. ID Plates Material Plate thickness (mm) Source 

1 A356 (Al-7Si-0.3Mg) 6.4 [33] 

2 AA1100-H14 8.0 [34] 

3 AA2024-T3 6.0 [35] 

4 AA2024-T3 9.5 [36] 

5 AA2024-T4 5.9 [37] 

6 AA2219-T87 8.3 [39] 

7 AA2524-T351 6.4 [38] 

8 AA5052-H34 5.0 [41-43] 

9 AA6092/17.5 SiCp-T6 composite 6.0 [48] 

10 AA7039 9.5 [50] 

11 AA7050-T7451 32.0 [47] 

12 AA7050-T7451 6.4 [49] 

13 AA7050-T751 9.5 [39] 

14 AA7075-T6 9.5 [50] 

15 AA7075-T6 6.3 [50] 

16 AA7075-T6 3.5 [51] 

17 AA5083-O 9.5 [39] 

18 AA5754 2.0 [40] 

19 AA6061-T6 6.0 [44-45] 

20 AA6061-T6 4.7 [46] 

21 AA6061-T651 25.0 [47] 

Dissimilar materials 

22 AA5083-130 HV/AA6082-T6 3.0 [52] 

23 AA6082-T6/AA5083-130 HV 3.0 [52] 

24 AA6061-T6/AA5083-H111 3.0 [53] 

2.2. Methodology  

In pursuit of this objective, this paper is built upon creating a deep learning neural network model (ANN), which 

is a machine learning method of modeling known for its ability to find complex and non-linear relations between 
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variables [54]. Furthermore, SHAP (Shapley Additive exPlanations) is used to interpret the output of our ANN model. 

 

2.2.1. Artificial Neural Network (ANN) Model 

The neural network model, with its architecture illustrated in Fig 3, is the heart of this research. It was designed 

and trained to predict torque values based on a comprehensive set of input features. The model architecture is 

constructed using Python scripts and libraries like TensorFlow and Keras. The model comprises multiple layers. 

Standardization of the feature set was implemented using StandardScaler to ensure consistent scaling across variables. 

 

 

Fig  3: Architecture of the ANN model 

There is a first dense layer with 520 neurons and a rectified linear unit (ReLU) activation function in the neural 

network architecture. After that, three hidden layers were added, and each one had 220 neurons activated by ReLU. 

Empirical findings during model development served as a guide for choosing these layer sizes, with a focus on 

balancing model complexity and generalization performance. The output layer consists of a single neuron responsible 

for predicting torque values. 

For optimization, the Adam optimizer was employed. The loss function chosen was mean squared error (MSE), 

aligning with the objective of minimizing the difference between predicted and actual torque values. During training, 
the model was subjected to 700 epochs with a batch size of 276. Early experimentation revealed that a validation split 

of 20% yielded optimal results, enabling the model to generalize effectively while avoiding overfitting. 

A Python script was employed to partition it into training, validation, and test sets. Specifically, the data was 

divided into feature variables (X) and a target variable (y). The training and validation data, constituting 70% of the 

dataset, were separated from the test data (30%) using the train_test_split function, with a random state of 70 to ensure 

reproducibility. The statistics of the experimental data used for training, testing, and validating the ANN model are 

shown in Table 2. 

 

 

Table 2:Statistics data used to train, test, and validate the ANN model 

modal parameters  mean std min 25% 50% 75% max 

AS TS 371.05 130.68 133.96 262.00 326.00 492.00 567.00 

RS TS 370.58 131.00 133.96 262.00 326.00 492.00 567.00 
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L0 10.82 9.44 2.00 5.00 6.40 9.50 32.00 

R1 10.12 3.09 5.00 7.50 10.00 12.70 17.50 

R2 4.03 1.61 1.50 3.00 3.55 6.00 6.25 

R3 3.48 1.73 1.25 2.00 3.00 5.00 6.25 

L1 7.56 4.64 1.20 4.00 6.00 9.35 15.90 

alpha 1.25 1.19 0.00 0.00 2.00 2.50 3.00 

WS 184.51 263.67 28.00 76.20 102.00 202.92 1800.00 

RS 646.28 500.47 52.41 265.00 549.73 900.00 2800.00 

T 88.09 96.15 6.18 14.87 48.56 105.92 340.49 

 

 

2.2.2. Artificial Shapley Additive exPlanations (SHAP) 
 

For interpreting the output of our ANN model, we used SHAP (Shapley Additive exPlanations) [55]. SHAP is an 

interpreting model based on game theory [56] and local explanations [57]; it offers a means to estimate the contribution 

of each feature. Assuming an ANN model where a group N (with n features) is used to predict an output (N). In SHAP, 

the contribution of each feature (φi is the contribution of feature i) on the model output v(N) is allocated based on 

their marginal contribution [58]. Based on several axioms to help allocate the contribution of each feature, shapely 

values are determined through: 

 

𝜑𝑖 =  ∑
|𝑆|!(𝑛− |𝑆|−1)! 

𝑛!
[𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)]𝑆⊆𝑁{𝑖}                                                          (1) 

 

A linear function of binary features g is defined based on the following additive feature attribution method: 

 

𝑔(𝑧′) = 𝜑0 + ∑ 𝜑𝑖𝑧𝑖
′𝑀

𝑖=1                                                                                              (2) 

 

Where  𝑧′ ∈ [1]M, equals 1 when a feature is observed; otherwise, it equals 0, and M is the number of input 

features [55]. 

 

 

2.2.3. Polynomial Regression 

Polynomial regression is a type of linear regression where the polynomial relation between variables is described 

by a curve instead of a straight line. Python's machine learning library "sklearn" was used to find a polynomial equation 

that fits our dataset. The dataset was split into training and testing data X and Y, respectively, then systematically 
varied the degree of the polynomial from 1st to 5th degree and captured the performance of each of the polynomials 

through multiple metrics (R square, mean square error, mean absolute percentage error, mean absolute error, and sum 

square error) for later comparisons with our ANN model. 

 

3. Results and discussions 

The architecture and training parameters that were chosen for the current model helped to rapidly reach a low loss 

of value, as shown in Fig 4. The training was stopped after 700 epochs when it reached a meager loss value and 

avoided overfitting. The trained model also showed impressive predictive capability, as illustrated in Fig 5, where the 

predicted values are relatively accurate. 
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Fig  4: Predicted values of torque loss for training and validation datasets 

 

 

Fig  5: Predicted and experimental torque comparison 

Several criteria were employed to assess the accuracy of the predictive model. The resulting R-squared of 99.53% 

can be referred to as the variability in torque requirements, which can be effectively attributed to the input parameters. 

This result underscores the model's robust explanatory capacity. The limited values of MAE = 4.38 indicated that the 

predicted torque does not deviate from the experimental sets. Moreover, the MAPE of 5.94% reflects its reliability in 

estimating torque requirements with a high degree of fidelity. Finally, the RMSE of 7.48 shows the precision of the 

predictions. The best results of the polynomial regression based on the previously mentioned metrics are of 2 then 1, 

respectively. As stated in Table 3, while the rest of the polynomial preformed worst. The comparisons show that the 

current ANN model performed better than the polynomial regression on testing data. Collectively, these metrics 

explain the outstanding performance of the model in predicting torque. 
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Table 3: Comparisons of polynomial regression and the modified ANN model 

 

 

 

 

 

 

 

 

 

Using "SHAP" 

gives more precise indications about the parameters that most affect the torque used in the FSW process. Fig 6 shows 

that "Rotational Speed," "Plate thickness," and "Tilt angle" have a significant impact on torque predictions, which 

highlights their critical roles in FSW process control and optimization.  

The Rotational speed (RS) was the most influential feature, with a mean absolute SHAP value of 52.71, 

emphasizing the importance of controlling rotational speed to optimize torque. It can be deduced from the SHAP 
graph that RS and torque have an inverse relationship. The Tilt Angle at 22.91 SHAP value plays a substantial role in 

torque generation and should be managed precisely. It can be deduced from the SHAP graph that tilt angle and torque 

have an inverse relationship. Plate Thickness at 22.43 SHAP value significantly affects torque, highlighting its role in 

design considerations. It can be deduced from the SHAP graph that Plate Thickness and torque have a direct 

relationship. 

 

 

Fig  6: SHAP values of predictive torque model 

4. Conclusions 

Torque plays a vital role in friction stir welding studies, as it affects the quality of the weld and the efficiency of 

the weld joint. Machine learning is considered an effective tool in manufacturing operations. In this study, a machine 

learning model was prepared based on artificial neural networks and Shapley Additive Explanations. The current 

comprehensive study shows: 

1. With a high R-squared score of 0.995, the predictive ANN model performs exceptionally well, explaining 

99.53% of the variability in torque and establishing a benchmark for accuracy. Significantly low MAE, 

MAPE, and RMSE values (4.38, 5.94%, and 7.48) highlight its accuracy in torque prediction. 

 Polynomial Regression ANN model 

Degree = 1 Degree = 2 

MSE 473.64 280.08 55.87 

R2 0.952 0.971 0.995 

MAE 15.8 12.39 4.38 

MAPE 56.86% 36.57% 5.94% 

RMSE 21.76 16.74 7.48 

SSE 2.75E+4 1.62E+4 4861.19 
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2. The study highlighted the pivotal roles played by "Rotational Speed," "Plate Thickness," and "tilt angle" in 

shaping torque predictions. These insights provide a foundation for informed decision-making in FSW 

process optimization, facilitating the fine-tuning of parameters to achieve desired torque values. 

3. The study confirmed that combining predictive modeling and parameter importance analysis can achieve 

FSW optimization, which leads to reduced energy consumption.  

 

5. Nomenclature 

FSW  Friction Stir Welding  

MAE Mean Absolute Error    

MAPE Mean absolute Percentage Error 

RMSE Root Mean Square Error 

ANN Artificial Neural Network 

MSE  Mean Square Error 

SHAP Shapley Additive exPlanations 

SSE  Sum Square Error 

RS  Rotational Speed 

WS  Welding Speed (advancing speed) 

AS TS Advancing Side Tensile Strength 

RS TS Retreating Side Tensile Strength 

L0  Plate Thickness 

L1  Pin Length 

R1  Shoulder Radius 

R2  Pin base Radius 

R3  Pin tip Radius 

Alpha Tilt angle 

T  Torque 
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