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Abstract 

This paper presents size dependent stability analysis a cantilever micro 

laminated beam embedded in elastic medium by using the modified coupled 

stress theory which includes the length scale parameter. The micro beam 

subjected to compressive load is considered as three composite laminas and 

embedded in elastic medium which is modelled in the Winkler foundation 

model. In the obtaining of the governing equations, the energy principle is 

used. In the solution of the buckling problem, the energy based Ritz method 

is implemented with algebraic polynomials. In order to accuracy obtained 

expressions and used method, a comparative study is performed. Many 

parametric studies are presented in order to investigate the buckling of 

laminated micro beams. For this purpose, effects of stacking sequence of 

laminas, geometric parameters, length scale parameter, fiber orientation 

angle, the parameter of elastic medium on critical buckling loads of 

laminated micro beams are investigated. 

Keywords: Micro Scaled Beam; Laminated Composites; Buckling; Elastic Medium; Modified Coupled 
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1. Main text 

Using micro/nano scaled structures in engineering projects is increasing in the process of time for instance 

microactuators, ultra-thin film, micro- and nano-electro mechanical systems, biosensors. In researching of 

mechanical behavior of micro/nano scaled materials, experimental study is still difficult in this day and age. 

Therefore, computational modelling and theoretical approach of these structures gain importance in the design and 

investigation stages. In the computational modelling of these type structures, molecular dynamics simulation and 

nonlocal continuum models are preferred. The couple stress theory is a type of nonlocal continuum models which 

consist of size effect for micro/nano scales. In the literature, a lot of researchers investigated and developed the 

nonlocal continuum theory in the analysis nano/micro structures (Mindlin [1,2], Eringen [3,4], Toupin [5], Lam et 

al. [6], Yang et al. [7], Park and Gao [8]). Yang et al. [7] investigated strain energy formulations of the Modified 

Couple Stress Theory (MCST). A lot researches used MCST to mechanical analysis of micro/nano structural 

elements [9-42]. 

 
In last decade, mechanical analysis of micro/nano composite structures is an interesting topic and investigated by 

a lot of researches. In last years, laminated micro/nano structures which one type of composite structures are used a 

 

* Corresponding author. Tel.: +90 224 300 34 98; 

E-mail address: serefda@yahoo.com , seref.akbas@btu.edu.tr 

 

mailto:serefda@yahoo.com


Journal of Computational Applied Mechanics 2024, 55 (1): 26-38 27 

lot of studies about analytical and computational solutions by some researches.  For example, Chen and Li [43] used 

MCST for investigation of vibration of layered micro-scaled beams. Roque et al. [44] used meshless method for 

static analysis of laminated micro beams based MCST. Buckling behaviour of layered micro scaled beams is 

investigated via MCST with various beam theories for by Abadi and Daneshmehr [45]. Mohammadabadi et al. [46] 

used differential quadrature method for thermal buckling behaviour of laminated microbeams. Vibration of 

nonuniform micro scaled beams is investigated by Hosseini Hashemi and Bakhshi Khaniki [47]. Feng et al. [48] 

presented nonlinear static analysis of layered Timoshenko nano beams. Dong et al. [49] analysed hygro-thermal 

post-buckling of layered micro scaled beams based MCST. Nguyen et al. [50] implemented Ritz method for static, 

vibration and stability of layered beams based MCST. Jouneghani et al. [51] investigated vibration of curved shells 

by using MCST. Khaniki et al. [52] used differential quadrature method for buckling analysis of nonuniform beams 

by using nonlocal strain gradient beams. Lal and Dangi [53] presented vibration responses of functionally graded 

Timoshenko nanobeams using nonlocal theory.  Bhattacharya and Das [54] presented dynamics of tapered micro 
scaled beam with functionally graded material under thermal effect by using MCST. Jouneghani et al. [55] presented 

an investigation about dynamics of layered beams via MCST and Ritz method. Priyanka and Pitchaimani [56] used 

Ritz method for static stability and vibration of layered microbeams. Akbaş [57, 58] used Ritz method for d 

dynamically analysis of layered micro scaled beams under moving load based MCST. 

 

The topic of this study was investigated for moving load analysis by the author [57, 58]. Effects of elastic 

medium or foundation on the stability analysis of laminated micro beams have not been investigated. This study 

aims to fill this blank for stability analysis of laminated micro beams embedded in elastic medium by using MCST 

and Ritz method. Contribution to literature of this study is to investigate and obtaining formulations and Ritz 

solution procedures of buckling-stability analysis of laminated micro beams embedded in elastic medium based on 

MCST. The elastic medium is modelled in the Winkler foundation model. Effects of geometric parameters, length 
scale constant, parameter of the elastic medium, stacking sequence of laminas and fiber angle on the critical 

buckling loads of the laminated micro scaled beam are obtained and discussed. 

 

2. Formulations 

A cantilever laminated micro scaled beam made of three identical laminas under compressive force (P) at the free 

end embedded in elastic medium is shown with the Cartesian coordinates X1, X2 and X3 in figure 1. The length, 

width and height of the laminated micro beam are indicated as L, b and h, respectively. The elastic medium is 

considered as the Winkler model and its elastic parameter is indicated as kw. 

 

 
Fig 1: A layered micro scaled beam embedded in elastic medium under a compressive load. 

 

 

By using MCST, strain energy ( ) is expressed as follows: (Yang et al. [7]);    

                                                                                                                                            (1) 

where σ, ε, m, χ indicate stress tensor, strain tensor, the deviatoric part of the couple stress tensor, symmetric 

curvature tensor, respectively [8]; 
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                                                                                   (2) 

 

                                                                                       (3) 

 

                                                                                                       (4) 

 

                                                                                                        (5) 

 

where  ,  , ,  indicate material length scale parameter, rotation vector and Lamé constants; 

 

                                                                                               (6) 

                                                                                                   (7) 

 

For n th layer, Displacement-strain and constitutive relations for Euler-Bernoulli beam theory are presented as 

follows;              

                                                                                                                                                  (8) 

                                                                                                                                          (9) 

                                                                                         (10)   

                                                                                                       (11) 

In equations 8-11,   indicate horizontal displacement and  indicate vertical direction. For each layer,  , , 

 indicate transformed reduced stiffness constants [43]; 

 

                                                                                                      (12) 

                                                                                 (13) 

                                                                                 (14) 

In equations (12-14), , ,  indicates angle fiber orientation respect to the X1 direction for nth 

layer. For kth layer,  and  indicate length scale constant of matrix and fiber, respectively. In this study, it is 

considered as  . , ,  ,  are elastic stiffness components; 

 

                            , , ,  ,  ,                  (15) 

where ,  and  indicate shear modules.  and  indicate Poisson ratios. Substituting strain and stress 

expressions to energy expressions, strain energy ( ) and potential energy of the external loads ( ) are expressed as 

following; 
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                                                    (16) 

                                                                                                                                          (17) 

where 

                                                                      i=1,2,3                                 (18a) 

                                                                                                                (18b) 

 

Total potential energy is presented as: 

 

                                                                                                                                                               (19) 

 

Ritz method is implemented in solution of buckling problem with algebraic polynomials as a series of m terms as 

following. 

                                                                                                                                        (20) 

 

                                                                                                                                         (21) 

 

where and  indicate unknown coefficients, and  and  indicate coordinate functions and presented 

for cantilever beam as follows: 

 

                                                                                                                                                            (22) 
 

                                                                                                                                                       (23) 
 

 

where j indicates the number of polynomials. Based on the minimum total potential energy principle, unknown 

coefficients can be obtained by the conditions: 

                                                                                                                                           (24) 

Implementation differentiation of  in respect to  and  gives eigenvalue equations for the buckling problem: 

 

                                                                                                                                        (25) 

where [K] and  are the stiffness and geometric matrixes, respectively : 

 

                                                            ,                                         (26) 

where                                              

 

                                                                ,                                                        (27)                                                         

                                                      ,                                             (28)                                         
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                                                             ,                                            (29) 

                                                                     ,                                                            (30)                                                

                                                                      ,                                                     (31)     

 

The critical buckling loads of the laminated composite beam can be obtained with solving in the eigenvalue 

equations (Eq.25). Obtained expressions of the problem yields to classical theory (CT) if length scale constant l=0.  

 

3. Analysis Results and Discussion 

In the numerical results, effects of geometric parameters (L/h), length scale parameter, fiber orientation angle, 

the parameter of the elastic medium, stacking sequence of laminas on the critical buckling loads of the laminated 

micro beams are presented. Used parameters are presented as; E2 = 6.9 GPa, E1 =25 E2, G12 = G13=0.5E2 , G23=0.2E2 

, ν12=ν13=ν23=0.25 [43], b=h=10µm, =10-6 m, the length of the micro beam is changed according to the ratio of 

L/h. The number of the series term is taken as 10 in the Ritz solution.   

 

For accuracy the obtained expressions and used method, a comparison study is implemented in table 1. Critical 

buckling loads of laminated microbeam for 0/90/0 stacking sequence with pinned-rolled supports are obtained and 

compared with the results of Abadi and Daneshmehr [45]. As can be seen from table 1 that the presented results are 

good harmony with the results of Abadi and Daneshmehr [45]. 

 

 
Table 1. A comparison study: Critical buckling load of the laminated microscaled beam with pinned-rolled supports for 0/90/0. 

 Critical buckling load 

Length scale parameter  

( )  µm 

Abadi and Daneshmehr Present 

0 0.109672 0.10981 

1 0.112363 0.1158 

7 0.118283 0.1206 

10 0.127432 0.1294 

 

In figure 2 and 3, Critical buckling loads of laminated cantilever micro beam in both MCST and CT ( ) 

without elastic medium (kw=0) are plotted for stacking sequences of 0/30/0 and 30/0/30, respectively. As can be seen 

from figures 2 and 3, the difference between MCST and CT significantly increase with decrease in L/h. In higher 

ratio of L/h, the critical buckling loads of two theories are coincide with each other. It is observed from figures 2 and 

3, the difference between MCST and CT in the /0/  are bigger than those of 0/ /0 stacking sequences. It shows 

that the stacking sequence effects on the behaviour size effect. 
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Fig 2: Critical buckling loads versus L/h by MCST and CT for 0/30/0 stacking sequence and kw=0. 

 

 

 

 

 

Fig 3: Critical buckling loads versus L/h by MCST and CT for 30/0/30 stacking sequence and kw=0. 

 

In order to investigate the effect of fiber orientation angle ( ) on the critical buckling loads of the laminated 

cantilever micro beam, - Pcr relation is presented in figures 4 and 5 for L/h=20 without elastic medium (kw=0) in 

both MCST and CT for  0/ /0 and  /0/  stacking sequences, respectively. Also, In order to better see the effects 

of fiber orientation angle with together L/h, L/h and  versus Pcr presented in both MCST and CT for 0/ /0 and  

/0/  in figures 6 and 7 stacking sequences, respectively. Figures 4-7 shows that the critical buckling loads 

dramatically decrease with increase in  because of decreasing in the rigidity of the laminated micro beam. This 

decreasing comes into focus on the In  /0/  stacking sequences.  
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Fig 4: Critical buckling loads versus  by MCST and CT for L/h=20 for 0/ /0 stacking sequence and kw=0. 

 

 

Fig 5: Critical buckling loads versus  by MCST and CT for L/h=20 for  /0/  stacking sequence and kw=0. 
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Fig 6: Critical buckling loads versus  and L/h by MCST and CT for 0/ /0 stacking sequence and kw=0. 

 

 

 

Fig 7: Critical buckling loads versus  and L/h by MCST and CT for /0/  stacking sequence and kw=0. 

 

In order to investigate the effect of elastic medium on the critical buckling loads of the laminated cantilever 

micro beam, kw - Pcr relation is presented in figures 8 and 9 for L/h=20 in both MCST and CT for stacking 

sequences of 0/30/0 and 30/0/30, respectively. Also, in figures 10 and 11, kw and  versus Pcr plotted in both MCST 

and CT for stacking sequences of 0/30/0 and 30/0/30, respectively. It is shown from figures 8-9 shows that the 

critical buckling loads considerably increase with increase in kw. Effects of the kw parameter on the critical buckling 

in the  /0/  stacking sequence is more than those of the 0/ /0 stacking sequence. It is observed from figures 8-11 

that kw parameter, size effect has not effect on the size-dependent buckling of the laminated micro beam. The 

difference between MCST and CT does not change with increase in kw. 
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Fig 8: Critical buckling loads versus kw by MCST and CT for 0/30/0 stacking sequence and L/h=20. 

 

 

Fig 9: Critical buckling loads versus kw by MCST and CT for 30/0/30 stacking sequence and L/h=20. 

 

 

Fig 10: Critical buckling loads versus  and kw by MCST and CT for 0/ /0 stacking sequence and L/h=20. 
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Fig 11: Critical buckling loads versus  and kw by MCST and CT for /0/  stacking sequence and L/h=20. 

 

4. Conclusions 

In this study, the size dependent buckling of a cantilever laminated micro beam embedded in elastic medium is 

investigated based on MCST the Winkler foundation model by using the Ritz method with algebraic polynomials. In 

the numerical studies, effects of geometric parameters, length scale parameter fiber orientation angle, the parameter 

of the elastic medium, stacking sequence of laminas on the critical buckling loads of the laminated micro beams are 

obtained and discussed. The findings from this study are summarized as follow; Stacking sequence of laminated 

micro beam significantly effects on the behavior size dependent buckling loads. The ratio of L/h has important role 

on the size dependent buckling behavior of laminated micro beams. Effects of elastic medium parameter on the size 

dependent buckling loads can be changed according to the stacking sequence of the laminated micro beam. In higher 

values of kw, the critical buckling loads considerably increase. 
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