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Abstract 

Analyzing the nonlinear dynamic stability of axially moving carbon nanotube 

reinforced composite (CNTRC) piezoelectric viscoelastic nano/micro plate 

under time dependent harmonic biaxial loading is the purpose of the present 

study. The nano/micro plate is made from Polyvinylidene Fluoride (PVDF). It 

moves in the positive direction of the x-axis at a constant velocity and supported 

by a nonlinear viscoelastic piezoelectric foundation (Zinc Oxide). A viscoelastic 

material is assumed in the Kelvin-Voigt model. Nano/micro plate is exposed to 

electric potential, 2D magnetic field and uniform thermal gradient. Maxwell's 

relations are used to integrate magnetic field effects. The nano/micro plate as 

well as smart foundation are subjected to electric potential in thickness 

direction. The effective elastic properties are estimated using the Eshelby-Mori-

Tanaka approach. Von-Kármán's theory provides the basis for the nonlinear 

strain-displacement relationship. According to various shear deformation plate 

theories, a novel formulation is presented that incorporates surface stress effects 

via Gurtin-Murdoch elasticity theory. A modified couple stress theory (MCST) 

is used in order to consider small scale parameter. It is possible to derive the 

governing equations by using the energy method and Hamilton's principle. An 

analysis is conducted using Galerkin procedure and finally the incremental 

harmonic balance method (IHBM) to obtain the dynamic instability region 

(DIR). Among the parameters that will be examined in this study are small-

scale parameter, alternating and direct applied voltages, magnetic field 

intensity, surface effects as well as axially moving speed. The results 

demonstrate that increasing the axial speed of the nano/micro plate causes the 

system to become more unstable. As a result, if the smart foundation is 

considered, in addition to increasing the excitation frequency, the area of the 

instability zone will also decrease by at least 50%. It is estimated that in a static 

state (not moving), the area of the instability zone is reduced by more than 70%. 
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1. Introduction 

There are many reasons for the importance of nanotechnology because the properties of materials change as the 

particles become smaller. In other words, the physical properties of materials change with physical changes.  For 

example, properties such as color, weight, mechanical resistance and even electrical conductivity of a material 

change. For this reason, nanomaterials and, as a result, nanotechnology, are of great interest. Some metals, which are 

usually conductive, can be semi-conductors on a nano scale or even act as insulators and vice versa. As mentioned 

in Feynman's theory, on the nanoscale, materials can be produced atom by atom with desired structure and shape. Of 

course, in this case, the ratio of surface to volume is very significant. Therefore, surface effects should be 

investigated in the study of nanomaterials. This is a very important feature that occurs in reactions on the surface of 

materials. Nanotechnology itself is a vast field of science that provides many opportunities for the development of 

science. It covers almost all sciences, from basic sciences to aerospace sciences and more. In fact, nanotechnology is 
a basic science that has led to the development of all sciences and is therefore of special importance [1, 2]. 

One of the most important issues in the field of continuous environment mechanics is the effects of its size and 

performance on the mechanical behavior of a system. These effects have a significant effect on the mechanical 

behavior of the material when the particle size becomes very small, and the classical theories of the mechanics of 

continuous environments are not able to consider it. This point is very clear and visible especially on the atomic 

scale, whose structure is not so big compared to the internal atomic characteristics of matter. In fact, size effects 

arise due to the interference of two internal characteristic length scales, such as the distance between particles, and 

the external characteristic length, such as crack length. The main difference between a classical continuous medium 

model and a non-classical model is that in classical continuous medium mechanics, it is assumed that the amount of 

stress at a point depends on the amount of strain at that point. While in the non-classical continuous medium 

mechanics model, it is assumed that the stress at one point is a function of the amount of strain at all points of the 

object. This model originates from Eringen's research. Eringen's theory includes information about the energy 
between atoms and the internal size scale is introduced as a material parameter in the structural equations and has a 

good agreement with the experimental results [3, 4]. In this research, a more conventional non-classical theory than 

the Eringen theory (modified Couple stress) is used. This theory includes high-order stress, which explains the 

special and unique mechanical behavior and characteristics of materials, especially on a very small scale.  

Introducing dynamic stability to elastic systems was accomplished for the first time by Bolotin. The main focus of this 

study is the analysis of dynamic stability. As far as the amplitude of fluctuations with time is concerned, a dynamic system 

is stable when its solution to the governing differential equations maintains convergence under corresponding initial 

conditions. Furthermore, a theorem is stable when a small deviation in the assumptions leads to a small deviation in the 

result. Depending on the initial conditions, a dynamic system is said to be in Lyapunov stability if its solution does not 

diverge from equilibrium. Thus, a bounded input leads to a bounded output. Otherwise, the system becomes unstable. 

Dynamic stability is defined as the tendency of the system's response to equilibrium with time regardless of the initial 
conditions. In mathematics, this is called asymptotic stability. During dynamic stability analysis, when the system is 

subjected to time-dependent loading, the aim is to identify system parameters that would cause the system to lose stability 

if they were not controlled. Dynamic stability analysis involves excitation via equation coefficients. In other words, the 

analysis of dynamic stability is characterized by differential equations with time-dependent coefficients. If an object is 

subjected to a dynamic loading, its dynamic responses may not lead to severe vibrations under a certain condition, in 

which case it is called dynamic stability. A system may have static stability, but it may be disturbed in terms of dynamic 

stability. In order to establish dynamic stability, the system must also be statically stable. As said, in the discussion of 

dynamic stability analysis, the goal is to identify and control parameters of the system that lead to an excessive increase in 

the range of system vibrations. Usually, there is no suitable analytical answer for such problems, but by using some 

methods, without having a complete solution for the system, some of its features can be extracted. Among the most 

prominent equations with time-varying coefficients, we can mention Mathieu equation. The dynamic response of these 

system increases continuously with the passage of time and eventually leads to the instability of the system response. For 
this reason, it is very important to investigate and analyze the dynamic stability of these types of systems. Elastic systems 

under intermittent and time-varying axial loading, cam follower mechanism and pendulum with movable support are 

common examples of parametric excitation systems. Dynamic stability can be defined as the ability of a system to return 

to a steady state of operation after experiencing certain disturbances. In general, different systems or characteristics may 

affect the concept of dynamic stability. Dynamic stability refers to the power system's ability to maintain operational 

stability for a longer period of time following a small or large disturbance with the help of automatic regulation and 

control devices. Dynamic stability is the way the system reacts to a disturbance over time [5, 6]. 
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A composite material is a material that has two phases, matrix and reinforcement. At least 5% of the reinforcing 

phase should be used. The background phase surrounds the reinforcing phase and tries to keep it in its relative place. 

On the other hand, the reinforcing phase will improve the performance and mechanical properties of the composite 

material. Controlling the properties according to the need can be considered as one of the most important advantages 

of composite materials. Composite nanomaterials are those composite materials that have one or more components 

with dimensions less than 100 nanometers. The first phase of the composite material has a crystalline structure and 

is considered as a base or background and can be considered to be made of polymer, metal or ceramic. The second 

phase also consists of nanoparticles or nanotubes as reinforcements and fillers in line with specific goals such as 

strength, resistance, suitable electrical properties, etc [7, 8]. 

Crystals have a special geometric order in terms of the dispersion and distance of components, which is often not 

the same in all directions. Unlike crystals, in amorphous or non-crystalline solids, the dispersion and distance of its 

components are the same in all directions. These non-crystalline solids are called isotropic or isotropic solids. Since 
most of the physical properties of crystalline solids are different in different directions, they are called anisotropic or 

non-isotropic. Only crystals that crystallize in a cubic device behave like non-crystalline bodies because they have 

the same dimensions in three spatial directions. The phenomenon of anisotropy creates properties in crystals that 

have different and important applications in industry. For example, if crystals such as quartz or polyvinylidene 

fluoride are pulled from both sides, in a direction perpendicular to the pressure or tension, they will have an electric 

charge in the opposite direction, and if we change the direction of this pressure or tension, the type of electric charge 

will also change. It changes that this phenomenon is called piezoelectric. Also, if an alternating electric current is 

connected to these crystals, the crystals expand and contract alternately and due to vibration, it leads to the 

production of sound. This feature is used as sound production, ultrasound, electric oscillations, crystal microphones 

and gramophone needles. Some crystals such as germanium, silicon and carbon have semi-conducting properties 

and conduct electric current to some extent. If semiconductor crystals are heated or exposed to light, their electrical 
resistance decreases and they pass electricity better. Piezoelectric polymers are considered smart materials. For this 

concept, other expressions such as active substances, adjustable or adaptable substances are also used. Smart 

materials refer to materials whose one or more properties are affected in response to an external operator. Currently, 

piezoelectric materials are widely used due to their fast electromechanical response and high power generation 

without the need for special tools. The production of electrical polarization in response to mechanical stress is an old 

Greek and common piezoelectric term for the pressure-electricity phenomenon. This event is known as direct effect 

[9, 10]. There are also piezoelectric materials with reverse effects, in which mechanical deformation is observed as 

soon as baroelectricity is applied to them. Due to the need for piezoelectric materials with high flexibility in special 

applications such as transducers and the lack of required ability in ceramics, polymers were researched and this 

feature was found in polyvinylidene fluoride (PVDF) compact form was discovered. This discovery was extremely 

important due to its very thin surfaces, high flexibility and piezoelectric properties. In recent years, piezoelectric 

polymer materials, especially polyvinylidene fluoride, have received the attention of scientific communities due to 
their superior characteristics, including excellent stability, resistance to wear, corrosion, and high strength, and many 

applications in devices They have nanoelectromechanics like nano sensors. On the other hand, CNTs can 

dramatically alter the properties of these materials. It is also more important than ever to investigate their dynamic 

stability and vibration. An intense vibration causes these structures to be unstable. The parametric resonance versus 

dynamic load factor is used for the description of dynamic instability region. 

V.Bolotin [5] introduced dynamic stability to elastic systems for the first time. Many researchers continued to 

study dynamic stability after that. A. G. Arani et al. [11] discussed the vibration analysis of functionally graded 

nanocomposite plate moving in two directions. The results indicated that the natural frequency or stability of FG-

CNTRC plate is strongly dependent on axially moving speed. K. Bouafia et al. [12] investigated the bending and free 

vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model. They 

presented their results using a novel analytical model based on combined (cubic, sinusoidal and exponential) higher 
order formulation. M. Guellil et al. [13] analyzed the influences of porosity distributions and boundary conditions on 

mechanical bending response of FG plates resting on Pasternak foundation. R. S. Chahar, B. Kumar [14] studied the 

effectiveness of piezoelectric fiber reinforced composite (PFRC) laminate in active damping for smart structures. 

Using finite element method, the analysis reveals that the PFRC laminate can be used effectively for developing 

very light weight smart structures. N. Djilali et al. [15] evaluated the large cylindrical deflection analysis of FG 

carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT. F. Abad et al. [16] 

discussed the application of the exact spectral element method in the analysis of the smart functionally graded plate. 

K. Draiche et al. [17] analyzed the computational flexural response of laminated composite plates using a simple 

quasi-3D HSDT. A. Ameri et al. [18] studied the hygro-thermo-mechanical bending of laminated composite plates 
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using an innovative computational four variable refined quasi-3D HSDT model. The analytical solution is derived 

via Navier's procedure. Q.-H. Pham et al. [19] investigated the static, free vibration and buckling response of 

functionally graded porous (FGP) nano plates resting on the Parternak's two-parameter elastic medium foundation. 

A. Attia et al. [20] discussed the free vibration of FG plates under thermal environment via a simple 4-unknown 

HSDT. Benchmark solutions are considered to evaluate the accuracy of the proposed model. Z. Wang, Y. Chen [21] 

studied the multi-physical field effects on nonlinear static stability behavior of nanoshell based on a numerical 

approach. More focus has been paid to the effects of small scale parameter, electric voltage and magnetic field 

intensity on stability curves of the nanoshell. M. A. Alazwari et al. [22] developed a nonclassical model to analyze 

bending response of microstructures considering surface stress under different loading and boundary conditions. F. 

Z. Kettaf et al. [23] presented the mechanical and thermal buckling analysis of laminated composite plates. F. Zhang 

et al. [24] studied the parametric vibration stability analysis of an axially moving plate with periodical distributed 

materials. It is investigated how the mass density and elastic modulus of the material affect the stability of the 
system. Floquet's theory is proven to be effective by numerical simulations. T. Cao, Y. Hu [25] presented 

magnetoelastic primary resonance and bifurcation of an axially moving ferromagnetic plate under harmonin 

magnetic field. A small variation of control parameters can have a dramatic effect on the system motion 

characteristics, as magnetic field strength, axial velocity, and mechanical load have significant effects on vibration 

characteristics. F. L. Yang et al. [26] accomplished the low-velocity impact response of axially moving functionally 

graded graphene platelet reinforced metal foam plates. graphene platelet reinforced metal foam (GPLRMF) plates 

moving axially exhibit significant impact response depending on foam distributions, different GPL patterns, GPL 

weight fractions, foam coefficients, plate speeds, impactor masses, and impact velocity. A. G. Arani et al. [27] 

described the instability analysis of axially moving sandwich plates with a magnetorheological elastomer core and 

GNP-reinforced face sheets. They used FSDT plate theory and Halpin-Tsai model to present their issue. In this 

paper, the effect of several parameters on the instability of the plate (critical speed) is examined, including the 
magnetic field intensity, the thickness of the MR core, the dispersion pattern, and the mass fraction of GNPs. Y. 

Wang et al. [28] studied the vibration and stability analysis of rectangular plates axially moving in fluid. Using 

classical plate theory, they found that with increasing fluid density or immersion level, the natural frequency of the 

submerged moving plates decreased. Y.-F. Zhou, Z.-M. Wang [29] analyzed the dynamic instability of axially 

moving viscoelastic plate. In order to analyze their results, they considered the Kelvin-Voigt model. A. G. Arani, T. 

Soleymani [30] implemented the size-dependent vibration analysis of an axially moving sandwich beam with MR 

core and axially FGM faces layers in yawed supersonic airflow. They presented their results based on modified 

first strain gradient theory (MFSGT) and Hamilton’s principle. P. Hung et al. [31] investigated the Small scale 

thermal analysis of piezoelectric–piezomagnetic FG microplates using modified strain gradient theory. M. Arefi et 

al. [32] discussed the thermo-mechanical buckling behavior of FG GNP reinforced micro plate based on MSGT. 

Various theories and methods are used to verify the outputs of this work. A. Ghorbanpour Arani et al. [33] studied 

the pull-in instability of MSGT piezoelectric polymeric FG-SWCNTs reinforced nanocomposite considering surface 
stress effect. P. Kumar, S. Harsha [34] investigated the static, buckling and vibration response of three-layered 

functionally graded piezoelectric plate under thermo-electric mechanical environment. Virtual displacements and 

Von-Kármán displacement fields are used to obtain the governing equations of motion in first-order shear 

deformation theory (FSDT). A. Singh et al. [35] analyzed the viscoelastic free vibration analysis of in-plane 

functionally graded orthotropic plates integrated with piezoelectric sensors. Layer-wise functionally graded 

orthotropic plates are considered in this work using 3D elastic and viscoelastic free vibration formulations. Y. Zhao 

et al. [36] studied the nonlinear forced vibration of thermo-electro-elastic piezoelectric-graphene composite 

nanoplate based on viscoelastic foundation. Piezoelectric-graphene composite nanoresonators will undergo 

experimental characterization of their mechanical properties based on the dynamic results of this study. A. Sofiyev 

[37] discussed the dynamic stability of functionally graded viscoelastic plates with different initial conditions. Using 

the Galerkin method, the integro-differential equation system is solved. Z. Li et al. [38] presented the wave 
propagation analysis of porous functionally graded piezoelectric nanoplates with a visco-Pasternak foundation. 

Based on the Kelvin-Voigt model, the results demonstrate that the nonlocal parameters (NLPs) and length scale 

parameters (LSPs) have exactly the opposite effect on the frequency of the waves. P. H. Cong, N. D. Duc [39] 

analyzed the effect of nonlocal parameters and Kerr foundation on nonlinear static and dynamic stability of 

micro/nano plate with graphene platelet reinforcement. Airy stress functions, Galerkin method, and Runge-Kutta 

fourth-order method were used. M. H. Jalaei, H.-T [40] presented the dynamic stability analysis of viscoelastic 

porous FG nanoplate under longitudinal magnetic field via a nonlocal strain gradient quasi-3D theory. Navier and 

Bolotin's methods are used to calculate the unstable region. Q.-H. Pham, P.-C. Nguyen [41] investigated the dynamic 

stability analysis of porous functionally graded microplates using a refined isogeometric approach and MCST. J. 

Shi, X. Teng [42] studied the modified size-dependent dynamic stability and critical voltage of piezoelectric curved 

system. As a result of MCST and nonlocal theory, it was found that elastic foundation coefficients (Winkler and 

https://link.springer.com/article/10.1007/s42417-022-00792-6
https://link.springer.com/article/10.1007/s42417-022-00792-6
https://www.sciencedirect.com/topics/engineering/strain-gradient
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Pasternak type), boundary conditions, voltage applied, size-dependent parameters (length scales and nonlocal ones), 

and geometry affect critical voltages and dynamic stability. Q. Li et al. [43] discussed the nonlinear dynamic stability 

analysis of axial impact loaded structures via the nonlocal strain gradient theory. This paper considers four types of 

axial impact loading configurations, namely sinusoidal, exponential, rectangular, and damping. Y. Zhang et al. [44] 

researched the nonlinear dynamic responses of functionally graded graphene platelet reinforced composite cantilever 

rotating warping plate. A. A. Daikh et al. [45] investigated the Static and dynamic stability responses of multilayer 

functionally graded carbon nanotubes reinforced composite nanoplates via quasi 3D nonlocal strain gradient theory. 

S. Lu et al. [46] studied the dynamic stability of axially moving graphene reinforced laminated composite plate under 

constant and varied velocities. X. Guo et al. [47] investigated the dynamic responses of a piezoelectric cantilever 

plate under high–low excitations. They found that high-low coupled resonant frequencies change the motion of the 

piezoelectric cantilever plate from stable to unstable. R. Abdikarimov et al. [48] studied the dynamic stability of 

orthotropic viscoelastic rectangular plate of an arbitrarily varying thickness. Results obtained from the viscoelastic 
problem with the exponential relaxation kernel almost match those obtained from the elastic problem. A. Shariati et 

al. [49] discussed the nonlinear dynamics and vibration of reinforced piezoelectric scale-dependent plates as a class 

of nonlinear Mathieu–Hill systems: parametric excitation analysis. According to the results, bifurcation point 

variation is determined by damping coefficient, while amplitude response is controlled by natural frequency term. J.-

X. Wang et al. [50] investigated a novel composite joint with corrugated web and cover plates for simultaneously 

improving anti-collapse resistance and seismic behavior. Those configuration details have a significantly positive 

effect on the development of internal force, especially in the catenary mechanism stage to provide tensile force. C. 

Chu et al. [51] discussed the energy harvesting and dynamic response of shape memory alloys (SMA) nano conical 

panels with nanocomposite piezoelectric patch under moving load. using the FSDT and mixture rule, boron nitride 

nanotubes (BNNTs) with smart properties are used to reinforce the piezoelectric patch. They found that, increasing 

the weight fraction of Boron Nitride Nanotubes (BNNT) up to 0.4% in the piezoelectric layer was found to be a 
suitable strategy to simultaneously decrease the dimensionless dynamic displacement and enhance dimensionless 

voltage by 23.4% and 21%, respectively. P. Wan et al. [52] studied the application of Differential Quadrature 

Hierarchical Finite Element Method (DQHFEM) for free and forced vibration, energy absorption, and post-buckling 

analysis of a hybrid nanocomposite viscoelastic rhombic plate assuming CNTs’ waviness and agglomeration. The 

structure is located on a viscoelastic torsional fractional substrate. Their results showed that, the weight percent of 

the CNTs affects the number of oscillations and changes the vibration pattern so that with increasing the CNTs 

content, the number of oscillations is enhanced. 

In the author's knowledge, no report exists regarding the nonlinear biaxial dynamic stability analysis of 

SWCNTs reinforced piezoelectric viscoelastic nano/micro composite plate using Eshelby-Mori-Tanaka method 

based on MCST considering surface stress effects using various shear deformation plate theories and especially 

IHBM to determine DIR. In this article, the Galerkin method is applied to separate the parameters of time and space. 

Another innovation of this research is nonlinear viscoelastic piezoelectric foundation. The derivation of differential 
equations governing the problem according to various conditions such as electrical, mechanical, thermal and 

magnetic loading and also axially moving of nano/micro plate can be considered as the main and most important 

innovation of this research. 

 

2. Fundamental formulation 

2.1. Displacement field 

The displacement field for nano/micro composite plate is as follows [53]: 

 

(1) ( ) ( ) ( ) ( ) ( ) ( )( )0 0 0, ,
, , , , , , , , , , , ,

xx x
u x y z t u x y t zw x y t f z w x y t x y t= − + +  

(2) ( ) ( ) ( ) ( ) ( ) ( )( )0 0 0, ,
, , , , , , , , , , , ,

yy y
v x y z t v x y t zw x y t f z w x y t x y t= − + +  

(3) ( ) ( )0
, , , , , .w x y z t w x y t=  
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where , ,u v w  describe an arbitrary point's displacement along , ,x y z  respectively. Furthermore, 
0 0 0
, ,u v w  

provide a representation of the corresponding displacements of the middle surface, and t  is the time. According to 

the shape function ( )f z , stress distributions and transverse shear deformations are described within nano/micro 

plate thickness. To determine the displacement field based on the shape function, there are various plate theories that 

can be used [53]: 

 

(4) 

( )
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2 2
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2.2. Strain- displacement 

According to Von-Kármán's theory, the nonlinear kinematic relations are as follows [53, 54]: 
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, .
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2.3. Constitutive equations 

The constitutive equations for the piezoelectric nano/micro composite plate are as follows [55]: 
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where g  is structural damping constant based on Kelvin-Voigt model. 

As previously stated, , , ,
ij i ij i

D E   are stress components, displacement by electricity, strain, and electric field 

respectively. , ,
ij ij ij

Q e   are also coefficients of stiffness matrix, piezoelectric and dielectric.  

When the carbon nanofibers are angled within the matrix of a nano/micro composite plate [56]: 

 

 

The following point should be noted that the component of stress 
zz

  is ignored in comparison with other stress 

factors. This assumption, however, cannot be reconciled with a surface piezoelasticity theory. As a result, the 

assumption is that 
zz

  satisfies both the upper and lower surface balance conditions, which can be calculated in the 

following manner [57]: 
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2.4. Eshelby-Mori-Tanaka approach 

CNT fibers are long and straight in this approach. Furthermore, the composite matrix presents a uniform 

distribution of fibers. The stiffness coefficients are stated as follows [55]: 
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so that k  is the plane-strain bulk modulus normal to the fiber direction, n  is the uniaxial tension modulus in the fiber 

direction, l  is the associated cross modulus, m  and p  are the shear modulus in planes normal and parallel to the fiber 

direction, respectively. Based on the Mori–Tanaka method, the Hill’s elastic moduli are obtained as follows [58]: 

3. Energy method 

3.1. The strain energy 

Based on MCST, strain energy can be expressed as follows [59]: 
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The rotation vector , tensor of symmetric rotation gradient 
ij

 are presented as follows: 
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3.2. The surface strain energy 

In Gurtin and Murdoch's model, the thickness of the surface layer is assumed to be zero. As a result, the couple 
stress will not appear in the surface layer [57, 60]. 

The variation in surface strain energy of a nano/micro composite plate can be expressed as follows: 
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, ,s s s   refers to the Lame surface constants and constant of residual stress, respectively. 

3.3. The kinetic energy 

The kinetic energy and surface kinetic energy of the nano/micro plate can be expressed as follows, [27, 29, 53, 56]: 
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V  is the absolute velocity vector and parameter C , represents the constant speed of the nano/micro plate. 
 

3.4. External works 

3.4.1. Nonlinear visco-piezoelectric foundation 

Based on [33, 61, 62]: 
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3.4.2. Electric field 

An electric field can be expressed in terms of an electric potential. PVDF layer have the following electric 

potential distribution according to the Maxwell's equation: 
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In this equation, ( ), ,x y t describes distribution of the time and spatial of the electric potential within the 

system. 
0

V  represents voltage from the external source of the system, and   represents its natural frequency. 

 

 

3.4.3. Magnetic field 

It is possible to express the variations in external work caused by Lorentz force in the following manner. 

Maxwell’s relations [63]. Due to the fact that 2D magnetic fields are applied in any direction in this study, the 

following relationships must be taken into account: 
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where H  is total applied magnetic field and   is angle of between direction of 2D magnetic filed and positive 

x-axis. 

,
x y

H H  are magnetic intensity in x  and y  direction, respectively.  
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Considering Lorentz force in z direction [64]: 
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where   describe the permeability of the magnetic field. Also h  is vectors of magnetic field disturbance. 

3.5. Hamilton’s principle 

Hamilton's principle is used to derive the governing differential equations: 
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W U U T T     assign each variable its corresponding work on external projects, energy 

generated by strain, energy associated with surface strain, kinetic energy, and surface kinetic energy variations.  
 

4. Governing differential equations 

The following motion equations can be obtained by combining Hamilton's principle with integration by parts and 

separating unknown coefficients: 
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The stress resultants defined by: 
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4.1. Dimensionless groups 

This procedure facilitates the continuation of the problem solving process as well as simplifying the governing 

equations and allowing comparison with other articles. Maple software is used to perform the dimensioning steps: 
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5. Solving the governing differential equations 

5.1. Galerkin method 

This step involves discretizing dimensionless equations in space and time. By applying this technique, 

differential equations with partial derivatives are transformed into ordinary differential equations. After applying 

boundary conditions and multiplying the differential equations by appropriate coefficients (Acc. to table 1), the final 

differential equations are obtained. The Galerkin methodology includes considering the orthogonality condition of 

modes, which is one of the principles of this method, as well as double integration in length and width of the 

nano/micro plate. The harmonic solutions is considered in the following form [65]: 
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Table 1. The admissible functions for different boundary conditions  

B.C. X = 0 Y = 0 X = 1 Y = 1 Xm(X), (λ=mπ) Yn(Y), (μ=nπ) 
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Electrical B.C., 
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Equations of motion in form of matrix: 
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where , , , , ,l nl nlY M K K C C , representing a dimensionless displacement vector, mass matrix, linear stiffener 

matrix, nonlinear stiffener matrix, damping and nonlinear damping matrix, respectively. Appendix A and B provide 

the components of all matrices and their subset parameters. 
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5.2. Dynamic stability analysis 

Harmonic load is applied to nano/micro plate [66]: 
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IHB method is an accurate method of analyzing dynamic stability. By substituting the harmonic solutions in the 

following equation [67]: 
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R  is a correction term which is zero at boundary instability points. 
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where 
h

N  is an integer selected according to the accuracy of the problem. 
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In this method, it is necessary to select one element of the vector A  as a fixed reference with a zero increment. 

The first instability boundary is plotted in this analysis assuming 
1 1

1, 0b b=  = . On the other hand, the second 

instability boundary is represented by 
2 2

1, 0b b=  = . Additionally, the initial values of ,A   can be determined. 

furthermore,   is the known increment and is considered an independent variable. Calculation of , A   is based 

on the initial values of the system of algebraic equations, and the secondary values of , A are based on 

1 1 1 1
, ,a a b b + + + , continuing until the elements of the vector R  are sufficiently small.   is added to   

and the process is repeated. The iterative process of this method is shown in Figure 1. 1 9e = −  

 

Fig 1: IHBM algorithm 
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6. Results and discussion 

This part focuses on the impacts of small scale parameter, alternating and direct applied voltage, intensity of magnetic 

field, surface effects, thermal environment, static load factor and axially speed of nano/micro plate on the DIR. The 

viscoelastic piezoelectric nano/micro composite plate is made from PVDF and reinforced with SWCNTs. Table 2, lists 

their material properties [62]. Based on the authors' knowledge, there has not been a published study that examines the 

nonlinear dynamic stability of viscoelastic nano/micro plate under the conditions described in this paper. Since there are 

no references to such a work in the literature, it cannot be verified. Therefore, this paper is analyzed using a simplified 

method that does not consider surface effects, axially moving and several other factors. The findings of the present study 

are consistent with those of other studies. In table 3, the present work can be validated by comparing critical buckling load 

in various plate theories between the current article and the reference article [53]. In Fig. 3, the time response is illustrated 

for an arbitrary point within the region of dynamic instability. According to the graph, the response curve diverges in the 

region of instability, explaining the instability of the mentioned region and the validity of the study. Fig. 4, illustrates how 

the ( )/l h  parameter affects the dimensionless natural frequency. When the material length scale parameter approaches 

the thickness of the nano/micro plate, there is a significant difference in frequency between higher order and first order 

shear deformation plate theories. Fig. 5, presents the effect of axial speed of nano/micro plate on the DIR. As can be seen, 
if the smart foundation is considered, in addition to increasing the excitation frequency, the area of the instability zone will 

also decrease by at least 50%. In a static state, the nano/micro plate is estimated to reduce the area of instability by more 

than 70%. Based on MCST, fig. 6, shows the dynamic instability region of the piezoelectric nano/micro composite plate 

under direct and alternating voltages. The influence of direct voltages on parametric resonance is greater than that of 

alternating voltages. It should also be noted that a negative voltage has a greater impact on parametric resonance than other 

applied voltages. In the presence of a negative voltage, the piezoelectric nano/micro composite plate undergoes reverse 

polarization, becoming more stable as a result. Also, the dynamic instability region is larger for direct and alternating 

negative voltages as compared to other applied voltages. Fig. 7, illustrates how the piezoelectric polymeric nano/micro 

composite plate reinforced with SWCNTs responds to magnetic fields. Excitation frequencies increase with an increase in 

magnetic field. A piezoelectric nano/micro composite plate's excitation frequency is affected by its coefficient of residual 

surface stress in fig. 8. An increase in coefficient of residual stress is associated with an increase in nondimensional 

parametric resonance. The surface stress of nano/micro composite plate generates traction forces. As a result, the structure 
becomes more stable. As surface stress decreases, the dynamic stability region decreases. In this study, surface residual 

stress is considered positive. According to fig. 9,10 the primary nano/micro plate DIR is affected by low and high 

temperatures (thermal expansion coefficient with negative and positive values). It has been observed that different 

behaviors are displayed in these environments when the temperature is raised. A piezoelectric nano/micro composite plate 

is shown in fig. 11 to demonstrate how damping coefficient affect dynamic stability. As the damping coefficient of the 

system increase, the region of dynamic instability moves to lower excitation frequencies. Due to the increased energy 

damping produced by considering this parameter, the system is weaker and more susceptible to lower excitation 

frequencies. As shown in fig. 12, the static load factor affects the DIR for nano/micro plate. As the static loading factor 

increases, the initial DIR shifts to lower excitation frequencies. Additionally, it is reasonable to conclude that the 

nano/micro plate is more stable in the absence of static force. According to the equation related to the static load factor, 

increasing it reduces both the stiffness and frequency of the nano/micro plate. Fig. 13, shows the effect of the material 
length scale parameter on the dynamic instability region. As can be seen, the presence of the material length scale 

parameter tries to keep the system at higher excitation frequencies. Figures 14-17, demonstrate the frequency responses. 
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7. Conclusion 

A generalized shape function is used to characterize transverse shear deformations for  nonlinear dynamic 

stability analysis of viscoelastic piezoelectric nano/micro plate based on modified couple stress theory. The 

governing equations are derived based on Hamilton's principle. In order to validate the current formulation using 

IHBM, numerical results obtained from the developed plate theory are compared with those reported in the 

literature. The present paper concludes that all higher order shear deformation plate theories considered in this paper 

provide similar results, and when the thickness of the nano/micro plate is comparable with the material length scale 

parameter, the difference between the Mindlin plate theory and higher order shear deformation plate theory is 

significant. Also, The following are some of the remarkable results: 

• The smart foundation has a significant impact on the system stability control. This foundation reduces the area 

of dynamic instability region by more than 50% for a constant intensity of magnetic field. 

• It was concluded that neglecting surface and small scale effects lead to inaccurate results in dynamic stability 

response of the system, since a remarkable difference obtained in cases of with and without surface effects. 

• Due to the coefficients of surface stress increases, the parametric resonance increases. 

• In contrast to alternating applied voltage, voltage applied directly has a greater influence on excitation 

frequencies. 

•  The modified couple stress theory predicts higher excitation frequencies than the classical theory. 

• Dynamic instability region shifts to lower excitation frequencies as the damping coefficient of the structure 

increase. 

• PSDPT,HSDPT,ESDPT have approximately the same results. 

• The classical plate theory predicts a higher excitation frequency than other theories due to having a lower 

degree of freedom. 

 

Table 2: Material properties 

SWCNT PVDF ZnO 

E = 5.6466 TPa E = 8.3 GPa ν = 0.18 e31 = −0.51 C/m2 

G = 1.9445 TPa e31 = −0.130 C/m2 ρ = 1750 Kg/m3 e32 = −0.51 C/m2 

ρ = 4000 Kg/m3 e32 = −0.450 C/m2 ϵ11 = 1.1068 F/m e15 = −0.45 C/m2 

ν = 0.175 e15 = −0.009 C/m2 ϵ22 = 1.1068 F/m e24 = −0.45 C/m2 

- e24 = −0.276 C/m2 ϵ33 = 1.1068 F/m - 

 

Table 3: A comparison of critical buckling load 

Theory Present work (l/h=0.8) Ref [53] (l/h=0.8) 

CPT 33.2370 33.3892 

FSDT 30.8814 30.9928 

RPT 32.4033 32.6036 

SSDT 33.5007 33.6102 

PSDPT 32.5935 32.6036 

HSDPT 32.5942 32.6038 

ESDPT 32.6207 32.6310 
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Fig 2: Graphical abstract 

 

Fig 3: Time response of nano/micro plate for an arbitrary point within the DIR 
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Fig 4: The effect of l/h parameter on the dimensionless natural frequency 

 

Fig 5: The effect of axial speed of nano/micro plate on the DIR 
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Fig 6: The effect of direct and alternating voltages on the DIR 

 

Fig 7: The effect of magnetic field on the DIR 
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Fig 8: The effect of surface residual stress on the DIR 

 

Fig 9: The effect of low temperature on the DIR 

 

 

 

 

 

 



Journal of Computational Applied Mechanics 2024, 55 (2): 242-274 263 

 

 

 

Fig 10: The effect of high temperature on the DIR 

 

Fig 11: The effect of structural damping on the DIR 
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Fig 12: The effect of static load factor on the DIR 

 

Fig 13: The effect of length scale parameter on the DIR 
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Fig 14: Impact of voltage on the dimensionless natural frequency versus aspect ratio 

 

Fig 15: Impact of voltage on the dimensionless natural frequency versus magnetic field 
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Fig 16: Impact of aspect ratio on the dimensionless natural frequency versus Winkler constant 

 

Fig 17: Impact of temperature on the dimensionless natural frequency versus aspect ratio 
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