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Abstract 

This study attempts to shed light on the analysis of the static behavior of 

simply supported FG type property gradient material beams according to an 

original refined 2D shear deformation theory. Young's modulus is considered 

to vary gradually and continuously according to a power-law distribution in 

terms of volume fractions of the constituent materials. The equilibrium 

equations are obtained by applying the principle of virtual work. The 

governing equilibrium equations obtained are thus solved by using the 

analytical model developed here and Navier's solution technique for the case 

of a simply supported sandwich beam. Moreover, Using the numerical results 

of the non-dimensional stresses and displacements are calculated and 

compared with those obtained by other theories. Two studies are presented, 

comparative and parametric, the objective of which is the first to show the 

accuracy and efficiency of the theory used and the second to analyze the 

mechanical behavior of the different types of beams under the effect of 

different parameters. Namely boundary conditions, the material index , the 

thickness ratio and the type of beam. 

Keywords: Mechanical behavior; beams; Property Gradient Materials; Principle of virtual work; Navier's 

solution. 

1. Introduction 

Functionally graded materials (FGMs) are a class of advanced composite materials that have continuous gradation 

in composition and structure over volume, resulting in corresponding changes in the properties of the material [1, 2]. 

The concept offers the potential to optimize material response or functionality by tailoring the microstructure. FGMs 

eliminate the stress concentrations and singularities that often occur in laminated composites by providing smooth 

transitions in material properties [3].  

Beams are a common structural element analysed in FGM research. A wide variety of analytical and numerical 
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methods have been applied to study the behaviour of FGM beams under mechanical, thermal, and coupled thermo-

mechanical loading conditions. Earlier works focused on developing analytical solutions and computational models 

for basic responses like bending, vibration and buckling of FGM beams based on Euler-Bernoulli beam theory [4-6]. 

More advanced beam theories accounting for shear deformation have been formulated and applied to improve 

accuracy for short, thick FGM beams [7-11]. Higher order and other refined beam theories continue to emerge in 

efforts to improve modelling fidelity[12-15] . The flexibility of FGMs has motivated study of advanced responses like 

geometrical and material nonlinear behaviour[16-18]. 

A variety of computational methods have been leveraged and developed alongside analytic solutions to model 

FGM beams, including finite element methods [19, 20], meshfree methods [21, 22], differential quadrature methods  

and others[23]. Benchmark solutions have been useful for validating new computational models and serve as 

reference solutions for code verification [24, 25]. Micromechanical models have also provided insight on relating the 

graded microstructure to global beam responses [26, 27]. FG sandwich beams have also been studied as they can 
provide enhanced stiffness and fracture toughness compared to traditional sandwich composites [28, 29].  

Additional areas of active research include dynamic analysis of FGM beams [30], stability behaviour [31], 

formulation of theories accounting for additional effects like porosity [32]. Beams with variable thickness and other 

nonuniform geometries have also been explored [33-38]. Over-all, FGM beams remain a topic of significant research 

interest across the mechanics, materials and structures communities given the potential for tailoring gradation 

patterns and enabling advanced responses [39, 40]. 

Recent research has explored the dynamic stability and vibration characteristics of nanocomposite structures for 

aerospace and civil engineering applications. Advanced modeling techniques have been employed to capture the 

multiscale effects in these nanostructures. 

The exploration the impact of CNT distributions near surfaces on the dynamic stability of functionally graded 

viscoelastic plates, revealing an expanded stability region [39, 40]. Another investigation focused on optimizing the 
dynamic buckling of aircraft shells using CNT nanocomposites, resulting in increased frequency and stability. A 

separate study utilized nonlocal strain gradient theory to analyze the buckling of carbon nanocones under magnetic 

and thermal loads, demonstrating improved stability with higher gradient parameters [41-46] 

In the context of civil structures, an investigation was conducted to theoretically analyze wave propagation in 

porous sandwich beams with nanocomposite cores. The study revealed that increasing the volume fraction of 

nanoplatelets led to enhanced wave characteristics. Another examination focused on the fluid-structure interaction of 

pipes reinforced with silica nanoparticles, resulting in higher frequencies and critical velocity with increased 

nanoparticle concentration. Additionally, concrete pipes reinforced with nanofibers were analyzed under seismic 

loading, demonstrating a reduction in dynamic deflection [46-50].  

Conical shells experienced reduced stability regions due to the influence of temperature and moisture. The study 

investigated the hygrothermal effects on defective graphene sheets. Additionally, an analysis of piezoelectric 

nanocomposite beams revealed the impact of agglomeration on stability. The low-velocity impact response of conical 
shells was also evaluated [9, 10, 51, 52]. 

 

This study comprises two integral components: a comparative study and a parametric study, each serving distinct 

purposes. The primary goal of the comparative study is to underscore the precision and efficacy of the theoretical 

framework employed in this investigation relative to alternative theories found in the literature. Conversely, the 

parametric study is designed to scrutinize the mechanical behavior of diverse Functionally Graded (FG) beams, 

taking into account a range of influential parameters. These parameters encompass the material index (k), which 

governs the power-law distribution of Young's modulus, the thickness ratio (a/h) dictating the geometric aspects of 

the beams, and the specific type of beam itself. Exploring the intricate interplay of these parameters, including how 

boundary conditions such as simply supported (SS), clamped-clamped (CC), and clamped-free (CF) affect the 

mechanical responses, yields valuable insights into the nuanced behaviors exhibited by FG beams under diverse 
constraints. 

2. Functionally graded beam geometry  

Fig 1 depicts a beam with length L, width b, and thickness h, which is referred to as a functionally graded beam. 

The beam is composed of face layers, where each layer is made up of an isotropic material that transition into a 

functionally graded material. 
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Fig 1: Geometry and coordinates of the FG beam. 

 

The FG beam exhibits material properties, such as Young's modulus (E) and mass density (q) that undergo smooth 

variations solely in the z direction. These variations can be accurately described using the rule of mixture. 

 

mmcc VPVPzP +=)(   

            (1) 

                                           

The rule of mixture considers the proprieties of ceramic (Pc) and metal (Pm), as well as their respective volume 

fractions (Vc and Vm), and is mathematically expressed as follows: 

 

1=+ mc VV                                                                                                                                                      (2) 

 

To determine the volume fraction Vc, the profile is assumed to follow various simple power laws. The following 

expressions represent different types of profiles for the volume fraction Vc: linear, quadratic, cubic, and inverse 

quadratic. 
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3. Governing equations 

In this study, we focus on investigating the displacement model of FG beams. We utilize a high-order shear strain 

theory, commonly known as the refined theory, to represent the model. The displacement model can be described by 

the following equation: 

 

                                                                                                                                   

                             

                                                (4) 

 

Within the displacement model, 𝑤𝑏 represents the bending component, while 𝑤𝑠 represents the shearing 

component. These components describe the transverse displacement at a specific point situated on the median plane 
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of the beam. To capture the shear deformation across the beam's thickness, a shape function, denoted as f(z), is 

introduced. The specific form of the shape function f(z) is given by M. Chitour et al [32, 53]: 

  

                                                                                                                              

(5) 

 

The strains are expressed as follows: 
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Where:                                          is   the shape functions of transverse shear deformations.       
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The linear constitutive relations of a FG beam can be expressed as: 
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Where: 
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4. Equilibrium equations   

The equations of equilibrium are obtained by applying the principle of virtual displacements. They can be 

formulated as follows: 

 

(11) 

 

The variation of the deformation energy of the (FG) beam can be defined as follows: 

 

 

(12) 

 

The variation of the potential energy caused by the applied transverse load q on the FG beam is given by: 

 

(13)  
 

By substituting the expressions of δU and δV from equations (13) and (12) into equation (11) and integrating 

throughout the thickness of the beam, the equilibrium equations of the FG beam can be expressed as follows: 
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(14)  
 

In these equations, the stress and moment resultants Nx , Mb , Ms  and  Qxz are defined as follows: 
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5. Analytical solutions  

To solve the equilibrium equations, an analytical approach is employed utilizing the Navier solution. This 

approach allows for the derivation of analytical solutions specifically for a simply supported beam. By applying the 

Navier solution, it is determined that the solution can be expressed in the following form: 

 

 

 

 

                                        

(18) 

 

Where: 

 = mπ/L, (Un, Vb, Ws) are the unknown displacement coefficients.        

The transverse load q is expanded in the Fourier series as well. The load amplitude qn is determined using the 

calculations presented in: 
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(20) 
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6. Results and discussion 

In this section, the bending behavior of FG beams is investigated using Navier solutions. The analysis involves 

considering various theories and calculating the displacements and stresses of beams made with FG materials. The 

FG beams are composed of aluminum as the metal constituent (Al: Em = 70 GPa, νm = 0.3) and alumina as the 

ceramic constituent (Al2O3: Ec = 380 GPa, νc = 0.3). Two raport ratios, l/h = 5 and 20, are examined. To facilitate the 

analysis, the vertical displacement of the beams under a uniformly distributed load q is expressed in non-dimensional 

terms. This allows for a more convenient comparison and understanding of the results. 
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6.1. Validation and accuracy 

This section presents a numerical comparative study on the deflection, displacements and stress response of FG 

beams subjected to a uniform load. The non-dimensional results obtained are compared to existing analytical 

solutions from the literature to verify the accuracy of the present approach. 

Table 1: Non-dimensional deflections and stresses of FG beams under uniform load (a/h=5). 

k Method w   u   xx   xz  

 

0 

Li et al. [32, 53]   3.1657  0.9402 3.8020  0.7500  

Latifa et al. [32, 53]    3.1651  0.9406  3.8043  0.7489 

Vo, T.P et al. [32, 53]  3.1654  / 3.8020  0.7332  

Present 3.1643 0.9375 3.7954 0.7333 

 

1 

Li et al. [32, 53]   6.2599  2.3045 5.8837  0.7500  

Latifa et al. [32, 53]    6.2590  2.3052  5.8875  0.7489 

Vo, T.P et al. [32, 53]  6.2594  / 5.8836  0.7332  

Present 6.2576 2.2999 5.8725 0.7326 

 

2 

Li et al. [32, 53]   8.0602  3.1134 6.8812  0.6787  

Latifa et al. [32, 53]    8.0683  3.1146  6.8878  0.6870 

Vo, T.P et al. [32, 53]  8.0677  / 6.8826  0.6706  

Present 8.0622 3.1082 6.8680 0.6700 

 

5 

Li et al. [32, 53]   9.7802  3.7089 8.1030  0.5790  

Latifa et al. [32, 53]    9.8345  3.7128  8.1187  0.6084 

Vo, T.P et al. [32, 53]  9.8281  / 8.1106  0.5905  

Present 9.8058 3.7020 8.0880 0.5902 

 Li et al. [32, 53]   10.8979 3.8860 9.7063 0.6436 
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10 Latifa et al. [32, 53]    10.9413  3.8898  9.7203  0.6640 

Vo, T.P et al. [32, 53]  10.9381 / 9.7122 0.6467 

Present 10.9200 3.8764 9.6883 0.6458 

 

Table 2: Non-dimensional deflections and stresses of FG beams under uniform load (a/h=20). 

k Method w   u   xx   xz  

0 

Li et al. [32, 53]   2.8962  0.2306  15.0130  0.7500 

Latifa et al. [32, 53]    2.8962  0.2305  15.0136  0.7625 

Vo, T.P et al. [32, 53]  2.8962  / 15.0129  0.7451  

Present 2.8962 0.2305 15.0112 0.7455 

1 

Li et al. [32, 53]   5.8049  0.5686  23.2054  0.7500 

Latifa et al. [32, 53]    5.8049  0.5685  23.2063  0.7625 

Vo, T.P et al. [32, 53]  5.8049  / 23.2053  0.7451  

Present 5.8048 0.5685 23.2029 0.7435 

2 

Li et al. [32, 53]   7.4415  0.7691  27.0989  0.6787 

Latifa et al. [32, 53]    7.4421  0.7691  27.1005  0.7005 

Vo, T.P et al. [32, 53]  7.4421  / 27.0991  0.6824 

Present 7.4419 0.7690 27.0962 0.6815 

5 

Li et al. [32, 53]   8.8151  0.9133  31.8112  0.5790 

Latifa et al. [32, 53]    8.8186  0.9134  31.8151  0.6218 

Vo, T.P et al. [32, 53]  8.8182  / 31.8130  0.6023 

Present 8.8175 0.9132 31.8077 0.6015 

10 

Li et al. [32, 53]   9.6879  0.9536  38.1372  0.6436 

Latifa et al. [32, 53]    9.6907  0.9537  38.1408  0.6788 

Vo, T.P et al. [32, 53]  9.6905 / 38.1385 0.6596 

Present 9.6900 0.9535 38.1328 0.6590 

 

Table 1-2 presents the non-dimensional numerical results for the deflection, vertical displacements, axial stress, and 

shear stress of an FG beam under a uniform load. The results are obtained for various values of the material index k, 

while simultaneously varying the beam's a/h ratio. The obtained results are compared with those obtained in literature 

using analytical methods. 

 

Overall, the obtained results show a similarity with the results from all the compared theories in the relevant 

section. In other words, there is consistency between the results obtained in this study and the existing theories, with 

no significant discrepancies observed. 
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6.2. Parametric study 
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Fig 2 : Non-dimensional the center deflection change (ѿ) for the metal, ceramic and FGM  beams versus side-to-thickness ratio (a/h) 

with deferent  volume-fraction Vc. 
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Fig 3 : Variation of the non-dimensional deflection along the plate length direction (a/h =20) of beams with deferent  volume-fraction 

Vc 
 

Fig 2 shows the normalized transverse displacement (ѿ) as a function of the span-to-depth ratio (a/h) for 

functionally graded beams with different compositional profiles (Vc).  The results illustrate that the center deflection 

of FG beams is greater than that of fully ceramic (Al2O3) beams but less than that of fully metallic (Al) beams. The 

center deflection (ѿ) follows a quadratic trend for the compositional profiles, which is greater than the deflections for 

linear, cubic, and inverse quadratic profiles. Notably, the inverse quadratic profile results in smaller deflections than 

the linear and cubic profiles, while the linear profile leads to smaller deflections than the cubic profile. 
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Fig 4.a :  Variation of the non-dimensional normal stress xx  through the thickness (a/h =5) of square plate using: different     

volume-fraction Vc. 
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Fig 4.b :  Variation of the non-dimensional normal stress xx through the thickness (a/h =20) of square plate using: different    volume-

fraction Vc. 
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Fig 5.a:  Variation of the non-dimensional transverse shear stress xz through the thickness (a/h =5) of square plate using:           

deferent volume-fraction Vc. 
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Fig 5.b:  Variation of the non-dimensional transverse shear stress  xz  through the thickness (a/h =20) of square plate using:    

deferent volume-fraction Vc. 

 

 

Fig.3 depicts the variation of non-dimensional transversal displacement (ѿ) in relation to non-dimensional length 

for different compositional profiles (Vc). Furthermore, it is noteworthy that the deflections for ceramic (Al2O3)-rich 

beams are lower than those for metal-rich (aluminum) beams. 



72 M Chitour  et al. 

In Fig.4a and 4b, the axial stress distribution is illustrated, showcasing a compressive stress at the bottom surface 

and tensile stress at the top surface of Functionally Graded (FG) plates. The extreme conditions of a homogeneous 

ceramic (alumina) plate (k = 0) or a metal (aluminum) plate (k → ∞) result in maximum tensile axial stress at the 

bottom surface and minimum compressive axial stress at the top surface of the FG plate. 

Fig.5a and 5b present the variation of transverse shear stress across the thickness of square homogeneous and FG 

plates, incorporating linear, quadratic, cubic, and inverse quadratic profiles, respectively. The through-the-thickness 

distributions of transverse shear stresses for FG beams with linear, quadratic, cubic, and inverse quadratic 

compositional profiles (Vc) deviate from the parabolic pattern observed in homogeneous metal or ceramic beams. 

Fig.5a and 5b underscore the substantial impact of different volume fractions of constituent materials on transverse 

shear stresses throughout the plate thickness, with shear stress values being notably higher in cases of volume 

fractions exhibiting cubic profiles (Vc). 
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Fig 6 : variation of the non-dimensional deflection of the FGM beams versus side-to-thickness ratio (a/h) for different values  

of the index k. 

 

Fig.6 illustrates the relationship between the non-dimensional deflection of FG beams and the side-to-thickness 

ratio (a/h), considering various values of the index k. The trend reveals that the non-dimensional deflection (ѿ) of 

FGM beams decreases as the ratio a/h increases and increases with a reduction in the power law index (k). 

Furthermore, it is evident that the deflection of metal-rich FG beams surpasses that of ceramic-rich FG beams. 

This discrepancy can be attributed to the higher Young's modulus of ceramics (380 GPa) compared to that of metals 

(70 GPa). 

 

The next section  explores the impact of different boundary conditions simply supported (SS), clamped-clamped 

(CC), and clamped-free (CF)  on the non-dimensional deflection of FG beams in relation to the power law index k 

(with aspect ratios l/h equal to 5 and 20). 
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Fig 7 : variation of the non-dimensional deflection of the FG beams versus power law index k  

for different boundary conditions : SS,CC,CF (l/h=5). 
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Fig 8 : variation of the non-dimensional deflection of the FG beams versus power law index k  

for different boundary conditions: SS,CC,CF (l/h=20). 

 

 

In Fig.7 and 8, a comprehensive examination of the non-dimensional deflection of Functionally Graded (FG) 

beams is presented in relation to the power law index (k), considering distinct boundary conditions. Specifically, the 

variations in deflection are scrutinized for three specific boundary conditions: simply supported (SS), clamped-

clamped (CC), and clamped-free (CF). The aspect ratio is maintained at l/h=5 in Figure 7 and l/h=20 in Figure 8. 

 

Within Fig.7 and 8, the non-dimensional maximum deflections of beams as the power law index (k) increases. An 

escalation in k implies an augmentation in ceramic content, leading to heightened beam stiffness and subsequently 

increased non-dimensional maximum deflections. 
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7. Conclusion 

This study has systematically explored the bending behavior of functionally graded (FG) beams by employing an 

original 2D refined shear deformation theory. Comprehensive comparative and parametric analyses were 

meticulously conducted to not only validate the proposed approach but also elucidate the intricate influences of 

material composition on the structural response. 

The findings unequivocally established a commendable agreement with existing analytical solutions, thereby 

affirming the accuracy and reliability of the refined 2D theory utilized in this research. The parametric studies 

uncovered pivotal trends, including the central deflection of FG beams falling between those of fully ceramic and 

fully metallic beams. Noteworthy variations were observed with quadratic compositional gradation, resulting in 

higher deflections compared to linear, cubic, or inverse profiles. Axial stress distributions ranged from compressive at 

the bottom to tensile at the top, reaching maxima for homogeneous ceramic or metal configurations. Additionally, the 

shear stress distributions for FG beams exhibited a notable departure from the parabolic shape characteristic of 

homogeneous beams. 

In essence, the refined 2D theory has not only offered valuable insights into the intricate relationship between 

composition profiles and displacement and stress fields in FG beams but has also paved the way for optimizing 

stiffness and strength through judicious material gradation. Future endeavors could extend the application of this 

analytical framework to explore additional gradient configurations, diverse loading scenarios, and various boundary 

conditions. The prospect of coupling the mechanics solutions with optimization methods holds promise for the design 

and engineering of high-performance Functionally Graded Material (FGM) structural components. 
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