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Abstract 

Using the disk-form multi-layer method (MLM), a semi-analytical 

thermoelastic solution for rotating thick cylindrical pressure vessels with 

varying thickness is obtained. The first-order shear deformation theory 

(FSDT) is used for displacement and bi-directional temperature fields. The 

thick shell is divided into some virtual disks, and then a set of differential 

equations for constant thickness are obtained for each virtual disk. The 

general solution of the thick cylindrical shell is obtained, by applying 

continuity conditions between the virtual disks. The governing equations, 

which are a system of differential equations with variable coefficients, have 

been solved with MLM. Finally, some numerical results are presented to study 

the effects of mechanical and thermal loading, on the mechanical behavior of 

the thick cylindrical shell. 

 

Keywords: Thick cylindrical shell; Variable thickness; Bi-directional temperature fields; FSDT; Multi-
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1. Introduction 

Thick cylindrical shells with variable thickness are complex structures that require advanced analytical and 

computational methods for their design and analysis. The classic theories of thick wall shells have some limitations 

and may not accurately predict the behavior of such shells. As a result, researchers have developed more advanced 

analytical and semi-analytical methods for analyzing these structures [Fatehi and Nejad [1]; Mazarei et al. [2]; Nejad 

et al. [3]; Farajpour and Rastgoo [4]; Ebrahimi et al. [5]; Afshin et al. [6]; Kashkoli et al. [7]; Gharibi et al. [8]; Nejad 

et al [9]; Kashkoli et al. [10]; Jabbari and Nejad [11]; Dindarloo and Li [12]; Taghizadeh et al. [13]; Sofiyev and Fantuzzi 

[14];  Taghizadeh and Nejad [15]; Jabbari and Nejad [16]]. Furthermore, extensive research has been conducted in this 

field due to the diverse applications of these structures [kashkoli et al. [17]; Nejad et al. [18]; Kashkoli and Nejad [19]; 

Nejad and Fatehi [20]; Nejad and Kashkoli [21]; Dehghan et al. [22]; Kashkoli and Nejad [23]; Nejad et al.[24]; Farajpour 

et al. [25]; Li et al. [26]; Nejad et al. [27]; Ghannad and Nejad [28];Zhang and She [29]]. Panferov [30] utilized the 

successive approximations method to derive a solution to the problem of thermal loading on an elastic truncated 

conical pipe that has a uniform thickness. Sundarasivarao and Ganesan [31] utilized the finite element technique to 

investigate a conical shell that was exposed to pressure. Mirsky and Hermann [32] obtained the solution for thick 

cylindrical shells made of uniform and isotropic materials by utilizing the FSDT. Witt [33] obtained a differential 

equation for a conical shell under axis-symmetric temperature distributions. To find a specific solution for this 
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equation, Witt made an assumption that the temperature distribution could be expressed as a combination of hyperbolic 

and cubic functions. Jane and Wu [34] conducted research on the problem of thermoelasticity using the curvilinear 

circular conical coordinate system. For the elastic analysis of a thick conical shell subjected to nonuniform internal 

pressure, Eipakchi et al. [35] employed a mathematical approach based on perturbation theory for the elastic analysis 

of a thick conical shell with varying thickness under non-uniform internal pressure. Ghannad et al. [36] derived an 

elastic solution for truncated conical shells that are thick and have a uniform thickness. Arefi and Rahimi [37] 

investigated the thermoelastic behavior of a cylinder made of functionally graded material (FGM) when subjected to 

both mechanical and thermal loads. Eipakchi [38] employed a third-order shear deformation theory along with matched 

asymptotic expansion (MAE) of perturbation theory to determine the displacements and stresses of a thick conical 

shell. The shell was assumed to be homogeneous, isotropic, and axisymmetric, with non-uniform internal pressure 

causing variations in thickness. Ghannad et al. [39] studied displacements and stresses in pressurized thick cylindrical 

shells by using perturbation technique. Civalek [40] conducted a study on the free vibration analysis of laminated 

conical shells. The author investigated the cases of isotropic, orthotropic, and laminated materials and used the 

numerical solution of governing differential equations of motion based on transverse shear deformation theory to 

obtain the results. Nejad et al. [41] studied analytical solution and numerical solution on truncated conical shells Due 

to the existence of shear stress in the truncated cone based on FSDT. 

 Nejad et al. [42] presented a semi-analytical solution in a rotating cylindrical shell with variable thickness under 

uniform pressure based on FSDT. Ghannad et al. [43] studied of elastic analysis of pressurized FGM thick cylindrical shells. 

Nejad et al. [44] developed a mathematical solution that partially uses analysis and partially uses numerical methods 

to calculate the displacements and stresses in a cylindrical shell with varying thickness under a non-uniform pressure. 

Ghannad et al. [45] studied a semi-analytical solution to determine displacements and stresses in a thick cylindrical 

shell with variable thickness under uniform pressure based on disk form multilayers by using FSDT. Xin et al. [46] 

introduced a thermo-elasticity solution for one-dimensional FG cylinders that is based on the constituents' volume 

fraction and accounts for both thermal and mechanical loads. They systematically examined how the primary factors 

of the problem affect displacement and stress levels. Gharooni et al. [47] obtained thermo-elastic analysis of thick 

FGM cylinders based on third-order shear deformation theory by using perturbation technique. Jabbari et al. [48] 

developed a semi-analytical solution for thermo-elastic analysis using higher-order shear deformation theory for the 

vessel made of FGM subjected to the temperature gradient and internal non-uniform pressure. Nejad et al. [49] studied 

semi-analytically a FG rotating thick hollow cylinder with variable thickness and clamped ends under arbitrarily non-

uniform pressure on the inner surface by using the FSDT. Jabbari et al. [50] researched the thermoelastic analysis of a 

thick truncated conical shell that rotates, has a constant thickness, and is exposed to a temperature gradient and non-

uniform internal pressure. Jabbari et al. [51] presented a semi-analytical solution to obtain the displacements and 

stresses in an FGM rotating thick cylindrical shell with clamped ends under non-uniform pressure based on FSDT. 

Ghannad and Nejad [52] presented an elastic solution of pressurized FGM thick cylindrical shells based on FSDT. 

Jabbari et al. [53] investigated a thermo-elastic analysis of a rotating truncated conical shell subjected to temperature, 

internal pressure, and external pressure by using the FSDT and MLM. Yasinsky and Tokova [54] conducted a study 

on a one-dimensional temperature transient analysis and thermal stress analysis in an FG cylinder. They derived a 

solution for the problem by reducing it to a reverse thermo-elasticity problem.  Nejad et al. [55] presented a general 

formulation for thermo-elastic analysis of a FG thick shell of revolution based on higher-order shear deformation 

theory. Hamzah et al. [56] conducted a comprehensive study of the vibration characteristics of cylindrical shells under 

different ambient temperatures by using (FEM). Kashkoli [57] studied a thermomechanical solution for creep analysis 

of FG thick cylindrical pressure vessels with variable thickness using the FSDT and multilayer method. Aghaienezhad 

et al. [58] paper derived the GDQ method to analyze the behavior of spherical and cylindrical shells subjected to 

external pressure. Ifayefunmi and Ruan [59] presented a computational finite element study on the instability behavior 

of cylinder shells under axial compressive load. Ariatapeh et al. [60] analyzed stress and deformation in thick-walled 

cylindrical pressure vessels/pipes made of Mooney-Rivlin hyperelastic materials, presented their distributions, and 

evaluated the effects of various factors. Nejad et al. [61] studied elastic analysis of thick truncated conical shells under 

non-uniform pressure loading. Mannani et al. [62] analyzed the mechanical stress, static strain, and deformation of a 

cylindrical pressure vessel under mechanical loads using higher-order sinusoidal shear deformation theory and 

thickness stretching formulation. A parametric study investigates the stress and strain components, and the effect of 

the thickness stretching model is explored. 

This study presents a thermo-elastic analysis of a thick cylindrical pressure vessel with variable thickness using 

the MLM, which is a very efficient method. The thermal distribution is as bi-directional. The FSDT is utilized to solve 

the problem. The results obtained are compared with those derived from the finite element method (FEM) for selected 

load cases. 
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2. Governing Equation 

2.1. Mechanical analysis 

In FSDT, the assumption is made that the shear strain is assumed to be constant through the thickness of the shell. 

This theory predicts that the sections that are straight and perpendicular to the mid-plane of the shell will remain 

straight after deformation, but not necessarily perpendicular. 

Geometry and boundary condition and loading condition of a thick cylindrical shell with variable thickness h, and 

the length L, are shown in Fig. 1. The location of a typical point m, within the shell element is 

 

Fig. 1: Cross section of the rotating thick cylindrical pressure vessels with clamped–clamped ends 
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where z is the distance of a typical point from the middle surface. In Eq. 1, R(x) represents the distance of the middle 

surface from the axial direction and variable thickness h are 
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The general axisymmetric displacement field ( ,  x zU U ), in the FSDT could be stated based on axial displacement and 

radial displacement, as follows [63]. 
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where 0 ( )u x and 0 ( )w x are the displacement components of the middle surface. Also, 1( )u x and 1( )w x  are the 

functions used to determine the displacement field. The strain-displacement relations in the cylindrical coordinates 

system are [64]. 
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Considering the effect of the thermal strain on homogenous and isotropic materials, the stress-strain relations (i.e., 

constitutive equations) are as follows [64]. 
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Here, , , ,z x zx    and , , ,z x zx     are the stresses and strains in the axial (x), circumferential (θ) and radial 

(z) directions, respectively. Also, , ,E   and T are Poisson’s ratio, modulus of elasticity, the coefficient of thermal 

expansion and temperature gradient, respectively.  

3. Thermal Analysis 

Due to the influence of ( ) 0  = , the temperature distribution function within the cylinder can be expressed 

solely as a function of the radial coordinate ( r ) and the axial coordinate ( x ), therefore 

( ),T T r x=  (7) 

The temperature field for this cylinder with varying thickness using the first-order temperature theory (FTT) is 

expressed as follows [65]: 
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 ( ) ( )0 1 0 1T x zT x T zT= + = +  (8) 

where, 
0T  and 

1T  are the zero-order and first-order components of temperature respectively, which are only a 

function of axial direction x.  

   Assuming *T  as the reference temperature, for temperature changes from the reference temperature ( , )z x , is 

as follows: 

( ) * 0 1 0 1, ( ) ( )z x T T x z x z = − =  +  =  +   (9) 

where 
0  and 

1  denote the temperature variations relative to a reference temperature, specifically representing 

the zero-order and first-order components, respectively. 

These functions are only a function of axial direction x. Using gradients relations in the cylinder coordination [66] 

and using Eq. (9), the thermal field-temperature variations relationships are derived, as: 
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where ,ze e  and xe  are thermal field components in the radial, circumferential, and axial directions.  Also, the 

thermal strain and heat flux in the axisymmetric isotropic cylinder with varying thickness is calculated as follows: 
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where , ,t t t

z x    and t

xz  are the thermal strain. In addition, zq  and xq  are heat flux components in the radial ( )z  

and axial ( )x  directions. Also, K is the thermal conduction coefficient. The normal forces ( , , ,, ,m t m t m t
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),  bending 
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), shear force ( xQ ), and the torsional moment ( xzM ) in terms of mechanical (index m) 

and thermal (index t) stress resultants are [67]: 
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where in k  is a correction factor incorporated into the shear stress term. In the static state, for conical shells 

5 / 6k = [68]. 

According to the principle of virtual work, the changes in strain energy are equivalent to the changes in external 

work done, as expressed below [63]. 

U W =  (14) 

where U is the total strain energy of the elastic body and W is the total work of external forces due to internal 

pressure and centrifugal force. By substituting strain energy and the work of external forces, we have 
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Substituting Eqs. (15)-(16) into Eq. (14), and drawing upon the calculus of variation and the virtual work principle, 

concerning Eq. (13), the governing equations are obtained as: 
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Also, the boundary conditions are 
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The number of thermal and mechanical resultants isn't equal to the number of equations about Eq. (17), thus for 

solving the set of differential Eq. (17) thermal and mechanical are required to be expressed in terms of the components 

of temperature and displacement field. Eq. (18) states the boundary conditions which must exist at the two ends of the 

cylinder. By substituting Eq. (13) into Eq. (17), the set of differential Eq. (17) may be rewritten as: 
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(24) 

 

4. Multi-Layered Method (MLM) 

 

In the MLM, a homogeneous cylinder with a non-uniform thickness is partitioned into homogeneous disc-shaped 

layers with a uniform thickness of 
 k

h . By the mentioned assumptions, the set of non-homogenous linear differential 

equations converts to a nonhomogeneous set of differential equations with constant coefficients by using the ML 

method that for each homogenous disc are obtained as follows. 
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Fig. 2: Division of cylindrical shell with variable thickness to homogenous disks with constant thickness 

As a result, the governing equations are transformed into a non-homogeneous set of differential equations featuring 

constant coefficients. 
 k

x  and 
 k

R  are the length and  radius of the middle of the disks. The modulus of elasticity  and 

Poisson’s ratio of disks are assumed to be constant. The length of the middle of an arbitrary disk (Fig. 2) is as follows 

 
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( )
2
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R R ok iR x
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h R Ro i
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 (25) 

where 
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1 21
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k x

R R h h h
o i L
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 (26) 

Thus 
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 (27) 

Poisson’s ratio of disks is assumed to be constant. The governing equations for each homogenous disk are derived 

as follows: 

 
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 The coefficients matrices and  
 

6 6

k
F


 force vector are as follows: 
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The elastic solution is completed by the application of the boundary and continuity conditions. Defining the 

differential operator ( )P D , Eq. (28) is written as: 
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The total solution  of Eq. (35), is includes homogenous and particular parts. The homogeneous case is as follows: 
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In general state, the thermoelastic solution for each disk consists of 12 unknown values of 
   

,
k T k

i jC C  and an eight-

order polynomial which are a six-order polynomial belonging to displacement and a two-order polynomial belonging 

to thermal. The result of the determinant above is completed by the application of the boundary and continuity 

conditions. 

5. Boundary and Continuity Conditions 

In this problem, the boundary conditions of the clamped-clamped cylindrical shell subjected to temperature are: 

0 1 0 1

0 1 0 1

0 0

1 1

0

, , 0

, , 0

0

ref

x x L

u u u u

w w w w

T T

= =

     
     
     

= =     
−      

           

 (39) 

In the boundary between two layers, forces, stresses, and displacements are continuous due to the overall continuity 

and homogeneity in the cylinder. The continuity conditions are as follows: 
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And 
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According to the continuity conditions, in terms of ,z T , 12 equations are obtained. In general, if the shell is divided 

into n  disk layers, ( )12 1n −  equations are obtained. Utilizing the 12 equations of boundary condition, 12n  equations 

are obtained. The solution of these equations yields 12n  unknown constants. 

6. Results and Discussion 

The solution described in the preceding section for a homogeneous and isotropic cylindrical shell with variable 

thickness h , 1 40 mmh = , 2 30 mmh = , 1 100 mmR =  and 1000 mmL =  will be considered. The Young's Modulus, 

Poisson’s ratio, thermal expansion coefficient and thermal conductivity respectively, have values of 200 GPaE = , 

0.3 = , 4.3e-6 1 C =  and 175 m CW = . The applied internal pressure is 80 MPaP = .The cylindrical rotates 

with 500 rad s = ,thermal loading is in the form of internal heat flux of 2150 W miH  and the boundary conditions 

for temperature are taken as 1 50 CT =  and 2 50 CT = at the bottom and top of the cylinder. The cylindrical shell is 

subject to clamped-clamped boundary conditions, displacement and stresses are normalized by dividing it by the 

internal radii and internal pressure parameter, respectively.  

In Figs. 3, displacement distributions obtained, using MLM, are compared with the solutions of FEM and are 

presented in the form of graph. It can be seen that this solution is in good agreement with verified FEM results.  Fig. 3 

shows the radial displacement along the cylinder for angular speed 500 rad s = .  It is observed that at points far 

from the boundary, the radial displacement along the cylinder is almost uniform. In addition, the maximum amount 

of displacement distributions is related to the inner layer. 

  
Fig. 3: Normalized radial displacement distribution in different 

layers ( 500 rad s = ) 

Fig. 4: Normalized circumferential stress distribution in 

different layers ( 500 rad s = ) 

The distribution of circumferential stress at different layers is plotted in Fig. 4. It is observed that points far from 

the boundary are in a tensile state in all layers. Besides, at an arbitrary point along the length of the cylinder, the 

amount of circumferential stress is reduced from the inner layer to the outer layer. 
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In Fig. 5, the distribution of shear stress along the length of the cylinder is shown.  As shown in the figure, shear 

stress can be ignored in all layers at points far from the boundary. 

  
Fig. 5: Normalized shear stress distribution in different layers 

( 500 rad s = ). 

Fig. 6: Normalized equivalent stress distribution in different 

layers ( 500 rad s = ) 

Fig. 6 shows the distribution of von Mises stress at different layers. It can be noted that at points away from 

boundaries, the von Mises stress is significant, especially on the internal surface, which is the greatest. It is observed 

that the amount of stress is in a tensile state in all layers 

The effects of angular velocity ω on the distribution of the stresses and radial displacement in the middle layer are 

presented in Figs. 7-10. As shown in Fig. 7, increasing the amount of angular velocity has a significant effect on the 

amount of radial displacement. Also, compared to Fig. 3, the shape of the radial displacement profile remains almost 

unchanged. 

  
Fig. 7: Normalized radial displacement distribution subjected to 

different angular velocity ( 0h = ) 

Fig. 8: Normalized circumferential stress distribution subjected to 

different angular velocity ( 0h = ). 

Fig. 8 show the circumferential stress along the longitudinal direction in the middle layer at several angular 

velocities.  As shown in the figure, the circumferential stress is of the tensile type and, like the displacement, the effect 

of angular velocity on the circumferential stress is significant and the shape of the profile remains almost unchanged. 

In Fig. 9, the distribution of shear stress along the length of the cylinder at several angular velocities is shown.  As 

shown in the figure, as in Fig. 5, the shear stress can be neglected in all layers at points away from the boundary, and 

the influence of the angular velocity on it is negligible. 

  
Fig. 9: Normalized shear stress distribution subjected to different angular 

velocity ( 0h = ). 

Fig. 10: Normalized equivalent stress distribution 

subjected to different angular velocity ( 0h = ). 
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distribution of von Mises stress at different layers along the length of the cylinder at several angular velocities are 

shown in Fig. 10. As the angular velocity increases, the von Mises stress also increases. 

7. Conclusions 

This paper aims to develop analytical formulations and solutions for isotropic rotating thick-walled cylindrical 

pressure vessels with variable thickness, subjected to internal pressure and thermal loading, using FSDT. The basic 

equations for cylindrical shells with variable thickness are derived and solved using MLM, with clamped-clamped 

boundary conditions. The results for stresses and displacements are compared with those obtained through FEM 

solutions, and good agreement is found between them. The effects of varying angular velocities of the cylinder within 

a certain range on stresses and displacements are investigated. 

The obtained results demonstrate that the maximum value of von Mises stresses due to mechanical and thermal 

loading in cylinders with variable thickness under clamped-clamped conditions occurs near the boundaries. It is also 

noted that with increasing angular velocities within the investigated range, radial displacement and von Mises stress 

increase at points away from the boundaries. 
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